Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Kerstin Stahl x
- Refine by Access: All Content x
Abstract
Land surface models and large-scale hydrological models provide the basis for studying impacts of climate and anthropogenic changes on continental- to regional-scale hydrology. Hence, there is a need for comparison and validation of simulated characteristics of spatial and temporal dynamics with independent observations. This study introduces a novel validation framework that relates to common hydrological design measures. The framework is tested by comparing anomalies of runoff from a high-resolution climate-model simulation for Europe with a large number of streamflow observations from small near-natural basins. The regional climate simulation was performed as a “poor man’s reanalysis,” involving a dynamical downscaling of the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) with the Danish “HIRHAM5” model. For 19 different anomaly levels, two indices evaluate the temporal agreement (i.e., the occurrence and frequency of dry and wet events based on daily anomalies), whereas two other indices compare the interannual variability and trends based on annual anomalies. Benchmarks on each index facilitated a comparison across indices, anomaly levels, and basins. The lowest agreement of observed and simulated anomalies was found for dry anomalies. Weak to moderately wet anomalies agreed best, but agreement dropped again for the wettest anomalies. The results could guide the decision on thresholds if this regional climate model were used for the assessment of climate change scenario impacts on flood and drought statistics. Indices vary across Europe, but a gradient with decreasing correspondence between observed and simulated runoff characteristics from west to east, from lower to higher elevations, and from fast to slowly responding basins can be distinguished. The suggested indices can easily be adapted to other study areas and model types to assist in assessing the reliability of predictions of hydrological change.
Abstract
Land surface models and large-scale hydrological models provide the basis for studying impacts of climate and anthropogenic changes on continental- to regional-scale hydrology. Hence, there is a need for comparison and validation of simulated characteristics of spatial and temporal dynamics with independent observations. This study introduces a novel validation framework that relates to common hydrological design measures. The framework is tested by comparing anomalies of runoff from a high-resolution climate-model simulation for Europe with a large number of streamflow observations from small near-natural basins. The regional climate simulation was performed as a “poor man’s reanalysis,” involving a dynamical downscaling of the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) with the Danish “HIRHAM5” model. For 19 different anomaly levels, two indices evaluate the temporal agreement (i.e., the occurrence and frequency of dry and wet events based on daily anomalies), whereas two other indices compare the interannual variability and trends based on annual anomalies. Benchmarks on each index facilitated a comparison across indices, anomaly levels, and basins. The lowest agreement of observed and simulated anomalies was found for dry anomalies. Weak to moderately wet anomalies agreed best, but agreement dropped again for the wettest anomalies. The results could guide the decision on thresholds if this regional climate model were used for the assessment of climate change scenario impacts on flood and drought statistics. Indices vary across Europe, but a gradient with decreasing correspondence between observed and simulated runoff characteristics from west to east, from lower to higher elevations, and from fast to slowly responding basins can be distinguished. The suggested indices can easily be adapted to other study areas and model types to assist in assessing the reliability of predictions of hydrological change.
Abstract
Large-scale hydrological models describing the terrestrial water balance at continental and global scales are increasingly being used in earth system modeling and climate impact assessments. However, because of incomplete process understanding and limits of the forcing data, model simulations remain uncertain. To quantify this uncertainty a multimodel ensemble of nine large-scale hydrological models was compared to observed runoff from 426 small catchments in Europe. The ensemble was built within the framework of the European Union Water and Global Change (WATCH) project. The models were driven with the same atmospheric forcing data. Models were evaluated with respect to their ability to capture the interannual variability of spatially aggregated annual time series of five runoff percentiles—derived from daily time series—including annual low and high flows. Overall, the models capture the interannual variability of low, mean, and high flows well. However, errors in the mean and standard deviation, as well as differences in performance between the models, became increasingly pronounced for low runoff percentiles, reflecting the uncertainty associated with the representation of hydrological processes, such as the depletion of soil moisture stores. The large spread in model performance implies that any single model should be applied with caution as there is a great risk of biased conclusions. However, this large spread is contrasted by the good overall performance of the ensemble mean. It is concluded that the ensemble mean is a pragmatic and reliable estimator of spatially aggregated time series of annual low, mean, and high flows across Europe.
Abstract
Large-scale hydrological models describing the terrestrial water balance at continental and global scales are increasingly being used in earth system modeling and climate impact assessments. However, because of incomplete process understanding and limits of the forcing data, model simulations remain uncertain. To quantify this uncertainty a multimodel ensemble of nine large-scale hydrological models was compared to observed runoff from 426 small catchments in Europe. The ensemble was built within the framework of the European Union Water and Global Change (WATCH) project. The models were driven with the same atmospheric forcing data. Models were evaluated with respect to their ability to capture the interannual variability of spatially aggregated annual time series of five runoff percentiles—derived from daily time series—including annual low and high flows. Overall, the models capture the interannual variability of low, mean, and high flows well. However, errors in the mean and standard deviation, as well as differences in performance between the models, became increasingly pronounced for low runoff percentiles, reflecting the uncertainty associated with the representation of hydrological processes, such as the depletion of soil moisture stores. The large spread in model performance implies that any single model should be applied with caution as there is a great risk of biased conclusions. However, this large spread is contrasted by the good overall performance of the ensemble mean. It is concluded that the ensemble mean is a pragmatic and reliable estimator of spatially aggregated time series of annual low, mean, and high flows across Europe.