Search Results

You are looking at 1 - 10 of 25 items for

  • Author or Editor: Kevin A. Reed x
  • Refine by Access: All Content x
Clear All Modify Search
Adam R. Herrington
and
Kevin A. Reed

Abstract

The sensitivity of the mean state of the Community Atmosphere Model to horizontal resolutions typical of present-day general circulation models is investigated in an aquaplanet configuration. Nonconvergence of the mean state is characterized by a progressive drying of the atmosphere and large reductions in cloud coverage with increasing resolution. Analyses of energy and moisture budgets indicate that these trends are balanced by variations in moisture transport by the resolved circulation, and a reduction in activity of the convection scheme. In contrast, the large-scale precipitation rate increases with resolution, which is approximately balanced by greater advection of dry static energy associated with more active resolved vertical motion in the ascent region of the Hadley cell.

An explanation for the sensitivity of the mean state to horizontal resolution is proposed, based on linear Boussinesq theory. The authors hypothesize that an increase in horizontal resolution in the model leads to a reduction in horizontal scale of the diabatic forcing arising from the column physics, facilitating finescale flow and faster resolved convective updrafts within the dynamical core, and steering the coupled system toward a new mean state. This hypothesis attempts to explain the underlying mechanism driving the variations in moisture transport observed in the simulations.

Full access
Daniel R. Chavas
and
Kevin A. Reed

Abstract

Existing hypotheses for the dynamical dependence of tropical cyclone genesis and size on latitude depend principally on the Coriolis parameter f. These hypotheses are tested via dynamical aquaplanet experiments with uniform thermal forcing in which planetary rotation rate and planetary radius are varied relative to Earth values; the control simulation is also compared to a present-day Earth simulation. Storm genesis rate collapses to a quasi-universal dependence on f that attains its maximum at the critical latitude, where the inverse-f scale and Rhines scale are equal. Minimum genesis distance from the equator is set by the equatorial Rhines (or deformation) scale and not by a minimum value of f. Outer storm size qualitatively follows the smaller of the two length scales, including a slow increase with latitude equatorward of 45° in the control simulation, similar to the Earth simulation. The latitude of peak size scales with the critical latitude for varying planetary radius but not rotation rate, possibly because of the dependence of genesis specifically on f. The latitudes of peak size and peak packing density scale closely together. Results suggest that temporal effects and interstorm interaction may be significant for size dynamics. More generally, the critical latitude separates two regimes: 1) a mixed wave–cyclone equatorial belt, where wave effects are strong and the Rhines scale likely limits storm size, and 2) a cyclone-filled polar cap, where wave effects are weak and cyclones persist. The large-planet limit predicts a world nearly covered with long-lived storms, equivalent to the f plane. Overall, spherical geometry is likely important for understanding tropical cyclone genesis and size on Earthlike planets.

Full access
Kevin A. Reed
and
Christiane Jablonowski

Abstract

The paper discusses the design of idealized tropical cyclone experiments in atmospheric general circulation models (AGCMs). The evolution of an initially weak, warm-core vortex is investigated over a 10-day period with varying initial conditions that include variations of the maximum wind speed and radius of maximum wind. The initialization of the vortex is built upon prescribed 3D moisture, pressure, temperature, and velocity fields that are embedded into tropical environmental conditions. The initial fields are in exact hydrostatic and gradient-wind balance in an axisymmetric form. The formulation is then generalized to provide analytic initial conditions for an approximately balanced vortex in AGCMs with height-based vertical coordinates. An extension for global models with pressure-based vertical coordinates is presented. The analytic initialization technique can easily be implemented on any AGCM computational grid.

The characteristics of the idealized tropical cyclone experiments are illustrated in high-resolution model simulations with the Community Atmosphere Model version 3.1 (CAM 3.1) developed at the National Center for Atmospheric Research. The finite-volume dynamical core in CAM 3.1 with 26 vertical levels is used, and utilizes an aquaplanet configuration with constant sea surface temperatures of 29°C. The impact of varying initial conditions and horizontal resolutions on the evolution of the tropical cyclone–like vortex is investigated. Identical physical parameterizations with a constant parameter set are used at all horizontal resolutions. The sensitivity studies reveal that the initial wind speed and radius of maximum wind need to lie above a threshold to support the intensification of the analytic initial vortex at horizontal grid spacings of 0.5° and 0.25° (or 55 and 28 km in the equatorial regions). The thresholds lie between 15 and 20 m s−1 with a radius of maximum wind of about 200–250 km. In addition, a convergence study with the grid spacings 1.0°, 0.5°, 0.25°, and 0.125° (or 111, 55, 28, and 14 km) shows that the cyclone gets more intense and compact with increasing horizontal resolution. The 0.5°, 0.25°, and 0.125° simulations exhibit many tropical cyclone–like characteristics such as a warm-core, low-level wind maxima, a slanted eyewall-like vertical structure and a relatively calm eye. The 0.125° simulation even starts to resolve spiral rainbands and reaches maximum wind speeds of about 72–83 m s−1 at low levels. These wind speeds are equivalent to a category-5 tropical cyclone on the Saffir–Simpson hurricane scale. It is suggested that the vortex initialization technique can be used as an idealized tool to study the impact of varying resolutions, physical parameterizations, and numerical schemes on the simulation and representation of tropical cyclone–like vortices in global atmospheric models.

Full access
Colin M. Zarzycki
,
Paul A. Ullrich
, and
Kevin A. Reed

Abstract

This article describes a software suite that can be used for objective evaluation of tropical cyclones (TCs) in gridded climate data. Using cyclone trajectories derived from 6-hourly data, a comprehensive set of metrics is defined to systematically compare and contrast products with one another. In addition to annual TC climatologies, attention is paid to spatial and temporal patterns of storm occurrence and intensity. Assessment can be performed either on the global scale or for regional domains. Simple-to-visualize “scorecards” allow for rapid credibility assessment. We showcase three key findings enabled by this suite. First, we compare the representation of TCs in seven current-generation global reanalyses and conclude that higher-resolution models and those with TC-specific assimilation contain more accurate storm climatologies. Second, using a free-running Earth system model (ESM) we find that full basin refinement is required in variable-resolution configurations to adequately simulate North Atlantic Ocean TC frequency. Upstream refinement over northern Africa offers little benefit in simulating storm occurrence, but spatial genesis patterns are improved. We also show that TCs simulated by ESMs can be highly sensitive to individual parameterizations in climate models, with North Atlantic TC metrics varying greatly depending on the version of the Morrison–Gettelman microphysics package that is used.

Full access
Arianna M. Varuolo-Clarke
,
Kevin A. Reed
, and
Brian Medeiros

Abstract

This work examines the effect of horizontal resolution and topography on the North American monsoon (NAM) in experiments with an atmospheric general circulation model. Observations are used to evaluate the fidelity of the representation of the monsoon in simulations from the Community Atmosphere Model version 5 (CAM5) with a standard 1.0° grid spacing and a high-resolution 0.25° grid spacing. The simulated monsoon has some realistic features, but both configurations also show precipitation biases. The default 1.0° grid spacing configuration simulates a monsoon with an annual cycle and intensity of precipitation within the observational range, but the monsoon begins and ends too gradually and does not reach far enough north. This study shows that the improved representation of topography in the high-resolution (0.25° grid spacing) configuration improves the regional circulation and therefore some aspects of the simulated monsoon compared to the 1.0° counterpart. At higher resolution, CAM5 simulates a stronger low pressure center over the American Southwest, with more realistic low-level wind flow than in the 1.0° configuration. As a result, the monsoon precipitation increases as does the amplitude of the annual cycle of precipitation. A moisture analysis sheds light on the monsoon dynamics, indicating that changes in the advection of enthalpy and moist static energy drive the differences between monsoon precipitation in CAM5 1.0° compared to the 0.25° configuration. Additional simulations confirm that these improvements are mainly due to the topographic influence on the low-level flow through the Gulf of California, and not only the increase in horizontal resolution.

Full access
Alyssa M. Stansfield
,
Kevin A. Reed
,
Colin M. Zarzycki
,
Paul A. Ullrich
, and
Daniel R. Chavas

Abstract

Tropical cyclones (TCs) can subject an area to heavy precipitation for many hours, or even days, worsening the risk of flooding, which creates dangerous conditions for residents of the U.S. East and Gulf Coasts. To study the representation of TC-related precipitation over the eastern United States in current-generation global climate models, a novel analysis methodology is developed to track TCs and extract their associated precipitation using an estimate of their dynamical outer size. This methodology is applied to three variable-resolution (VR) configurations of the Community Atmosphere Model, version 5 (CAM5), with high-resolution domains over the North Atlantic and one low-resolution conventional configuration, as well as to a combination of reanalysis and observational precipitation data. Metrics and diagnostics such as TC counts, intensities, outer storm sizes, and annual mean total and extreme precipitation are compared between the CAM5 simulations and reanalysis/observations. The high-resolution VR configurations outperform the global low-resolution configuration for all variables in the North Atlantic. Realistic TC intensities are produced by the VR configurations. The total North Atlantic TC counts are lower than observations but better than reanalysis.

Free access
Erica Bower
,
Kevin A. Reed
,
Paul A. Ullrich
,
Colin M. Zarzycki
, and
Angeline G. Pendergrass

Abstract

Tropical cyclones (TCs) and their associated precipitation can have devastating impacts on the areas affected, with outcomes ranging from mudslides to inland flash flooding. Previous studies have used a fixed radius around the TC to isolate storm-related precipitation. One previous study instead used a dynamic radius of 8 m s−1 winds, but the wind field of the TC can deteriorate or shift quickly after landfall or the onset of extratropical transition (ET). This study uses a dynamical radius derived from the 500-hPa geopotential height in and around the TC to define TC- and post-tropical cyclone (PTC)-related heavy precipitation, allowing for the analysis of precipitation with tropical origins after the official demise of the original TC. Climatologies are constructed, indicating a maximum in TC- and PTC-related heavy precipitation in the west North Pacific and a secondary maximum in the east North Pacific. PTC-related heavy precipitation accounts for as much as 40% of the annual heavy precipitation in the northwest portion of the west North Pacific basin and 3.13% of heavy precipitation globally. We observe that the major hurricane stage contributes on average 2.6% of the global TC- and PTC-related precipitation, while the less intense but more common tropical storm stages of the TC life cycle contribute 85.7% of this observed precipitation. This analysis framework can be further extended to assess model biases and climate projections of TC and PTC precipitation.

Free access
Kevin A. Reed
,
Brian Medeiros
,
Julio T. Bacmeister
, and
Peter H. Lauritzen

Abstract

In the continued effort to understand the climate system and improve its representation in atmospheric general circulation models (AGCMs), it is crucial to develop reduced-complexity frameworks to evaluate these models. This is especially true as the AGCM community advances toward high horizontal resolutions (i.e., grid spacing less than 50 km), which will require interpreting and improving the performance of many model components. A simplified global radiative–convective equilibrium (RCE) configuration is proposed to explore the implication of horizontal resolution on equilibrium climate. RCE is the statistical equilibrium in which the radiative cooling of the atmosphere is balanced by heating due to convection.

In this work, the Community Atmosphere Model, version 5 (CAM5), is configured in RCE to better understand tropical climate and extremes. The RCE setup consists of an ocean-covered Earth with diurnally varying, spatially uniform insolation and no rotation effects. CAM5 is run at two horizontal resolutions: a standard resolution of approximately 100-km grid spacing and a high resolution of approximately 25-km spacing. Surface temperature effects are considered by comparing simulations using fixed, uniform sea surface temperature with simulations using an interactive slab-ocean model. The various CAM5 configurations provide useful insights into the simulation of tropical climate as well as the model’s ability to simulate extreme precipitation events. In particular, the manner in which convection organizes is shown to be dependent on model resolution and the surface configuration (including surface temperature), as evident by differences in cloud structure, circulation, and precipitation intensity.

Full access
Funing Li
,
Daniel R. Chavas
,
Kevin A. Reed
,
Nan Rosenbloom
, and
Daniel T. Dawson II

Abstract

The prevailing conceptual model for the production of severe local storm (SLS) environments over North America asserts that upstream elevated terrain and the Gulf of Mexico are both essential to their formation. This work tests this hypothesis using two prescribed-ocean climate model experiments with North American topography removed or the Gulf of Mexico converted to land and analyzes how SLS environments and associated synoptic-scale drivers (southerly Great Plains low-level jets, drylines, elevated mixed layers, and extratropical cyclones) change relative to a control historical run. Overall, SLS environments depend strongly on upstream elevated terrain but more weakly on the Gulf of Mexico. Removing elevated terrain substantially reduces SLS environments especially over the continental interior due to broad reductions in both thermodynamic instability and vertical wind shear, leaving a more zonally uniform residual distribution that is maximized near the Gulf coast and decays toward the continental interior. This response is associated with a strong reduction in synoptic-scale drivers and a cooler and drier mean-state atmosphere. Replacing the Gulf of Mexico with land modestly reduces SLS environments over the Great Plains (driven primarily thermodynamically) and increases them over the eastern United States (driven primarily kinematically), shifting the primary local maximum eastward into Illinois; it also eliminates the secondary, smaller local maximum over southern Texas. This response is associated with modest changes in synoptic-scale drivers and a warmer and drier lower troposphere. These experiments provide insight into the role of elevated terrain and the Gulf of Mexico in modifying the spatial distribution and seasonality of SLS environments.

Full access
Ping Liu
,
Kevin A. Reed
,
Stephen T. Garner
,
Ming Zhao
, and
Yuejian Zhu

Abstract

The frequency of atmospheric blocking has been largely underestimated by general circulation models (GCMs) participating in the Coupled Model Intercomparison Project (CMIP). Errors in the onset, persistence, barotropicity, geographical preference, seasonality, intensity, and moving speed of global blocking were diagnosed in 10 Geophysical Fluid Dynamics Laboratory (GFDL) GCMs for recent CMIP5 and CMIP6 using a detection approach that combines zonal eddies and the reversal of zonal winds. The blocking frequency, similar at 500 and 250 hPa, is underestimated by 50% in the Atlantic–Europe region during December–February but is overestimated by 60% in the Pacific–North America region during that season and by 70% in the southwest Pacific during July–August. These blocking biases at 500 hPa were investigated in the five CMIP6 models that showed improvements over the CMIP5 versions. The Atlantic–Europe underestimate corresponds to lower instantaneous blocking rates, lower persistent blocking rates, and higher persistent stationary ridge rates; the number of blocks with a duration of 4–5 days is only 40%–65% of that in observations. In contrast, the overestimate consists of excessive blocks with a duration longer than 12 days in the Pacific–North America and up to twice as many 4–6-day events in the southwest Pacific. Simulated December–February blocks up to 12 days in the Pacific–North America region tend to be stronger and to move more slowly than those in observations. Diagnostic sensitivity tests indicated that the zonal mean and zonal eddy components of the mean state play a key role, as replacing each with that of observations substantially reduced many of the outstanding biases in these GCMs.

Full access