Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Kevin Donofrio x
  • All content x
Clear All Modify Search
Kevin Birk, Eric Lenning, Kevin Donofrio, and Matt Friedlein


Using vertical temperature profiles obtained from upper-air observations or numerical weather prediction models, the Bourgouin technique calculates areas of positive melting energy and negative refreezing energy for determining precipitation type. Energies are proportional to the product of the mean temperature of a layer and its depth. Layers warmer than 0°C consist of positive energy; those colder than 0°C consist of negative energy. Sufficient melting or freezing energy in a layer can produce a phase change in a falling hydrometeor. The Bourgouin technique utilizes these energies to determine the likelihood of rain (RA) versus snow (SN) given a surface-based melting layer and ice pellets (PL) versus freezing rain (FZRA) or RA given an elevated melting layer.

The Bourgouin approach was developed from a relatively small dataset but has been widely utilized by operational forecasters and in post-processing of NWP output. Recent analysis with a larger dataset suggests ways to improve the original technique, especially when discriminating PL from FZRA or RA. This and several other issues are addressed by a modified version of the Bourgouin technique described in this article. Additional enhancements include use of the wet-bulb profile rather than temperature, a check for heterogeneous ice nucleation, and output which includes probabilities of four different weather types (RA, SN, FZRA, PL) rather than the single most likely type. Together these revisions result in improved performance and provide a more viable and valuable tool for precipitation-type forecasts. Several National Weather Service forecast offices have successfully utilized the revised tool in recent winters.

Restricted access