Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Kevin E. Kelleher x
  • All content x
Clear All Modify Search
David J. Stensrud, Ming Xue, Louis J. Wicker, Kevin E. Kelleher, Michael P. Foster, Joseph T. Schaefer, Russell S. Schneider, Stanley G. Benjamin, Stephen S. Weygandt, John T. Ferree, and Jason P. Tuell

The National Oceanic and Atmospheric Administration's (NOAA's) National Weather Service (NWS) issues warnings for severe thunderstorms, tornadoes, and flash floods because these phenomena are a threat to life and property. These warnings are presently based upon either visual confirmation of the phenomena or the observational detection of proxy signatures that are largely based upon radar observations. Convective-scale weather warnings are unique in the NWS, having little reliance on direct numerical forecast guidance. Because increasing severe thunderstorm, tornado, and flash-flood warning lead times are a key NOAA strategic mission goal designed to reduce the loss of life, injury, and economic costs of these high-impact weather phenomena, a new warning paradigm is needed in which numerical model forecasts play a larger role in convective-scale warnings. This new paradigm shifts the warning process from warn on detection to warn on forecast, and it has the potential to dramatically increase warning lead times.

A warn-on-forecast system is envisioned as a probabilistic convective-scale ensemble analysis and forecast system that assimilates in-storm observations into a high-resolution convection-resolving model ensemble. The building blocks needed for such a system are presently available, and initial research results clearly illustrate the value of radar observations to the production of accurate analyses of convective weather systems and improved forecasts. Although a number of scientific and cultural challenges still need to be overcome, the potential benefits are significant. A probabilistic convective-scale warn-on-forecast system is a vision worth pursuing.

Full access
Kevin E. Kelleher, Kelvin K. Droegemeier, Jason J. Levit, Carl Sinclair, David E. Jahn, Scott D. Hill, Lora Mueller, Grant Qualley, Tim D. Crum, Steven D. Smith, Stephen A. Del Greco, S. Lakshmivarahan, Linda Miller, Mohan Ramamurthy, Ben Domenico, and David W. Fulker

The NOAA NWS announced at the annual meeting of the American Meteorological Society in February 2003 its intent to create an Internet-based pseudo-operational system for delivering Weather Surveillance Radar-1988 Doppler (WSR-88D) Level II data. In April 2004, the NWS deployed the Next-Generation Weather Radar (NEXRAD) level II central collection functionality and set up a framework for distributing these data. The NWS action was the direct result of a successful joint government, university, and private sector development and test effort called the Collaborative Radar Acquisition Field Test (CRAFT) project. Project CRAFT was a multi-institutional effort among the Center for Analysis and Prediction of Storms, the University Corporation for Atmospheric Research, the University of Washington, and the three NOAA organizations, National Severe Storms Laboratory, WSR-88D Radar Operations Center (ROC), and National Climatic Data Center. The principal goal of CRAFT was to demonstrate the real-time compression and Internet-based transmission of level II data from all WSR-88D with the vision of an affordable nationwide operational implementation. The initial test bed of six radars located in and around Oklahoma grew to include 64 WSR-88D nationwide before being adopted by the NWS for national implementation. A description of the technical aspects of the award-winning Project CRAFT is given, including data transmission, reliability, latency, compression, archival, data mining, and newly developed visualization and retrieval tools. In addition, challenges encountered in transferring this research project into operations are discussed, along with examples of uses of the data.

Full access
Kevin E. Kelleher, Kelvin K. Droegemeier, Jason J. Levit, Carl Sinclair, David E. Jahn, Scott D. Hill, Lora Mueller, Grant Qualley, Tim D. Crum, Steven D. Smith, Stephen A. Del Greco, S. Lakshmivarahan, Linda Miller, Mohan Ramamurthy, Ben Domenico, and David W. Fulker
Full access
Suzanne Van Cooten, Kevin E. Kelleher, Kenneth Howard, Jian Zhang, Jonathan J. Gourley, John S. Kain, Kodi Nemunaitis-Monroe, Zac Flamig, Heather Moser, Ami Arthur, Carrie Langston, Randall Kolar, Yang Hong, Kendra Dresback, Evan Tromble, Humberto Vergara, Richard A Luettich Jr., Brian Blanton, Howard Lander, Ken Galluppi, Jessica Proud Losego, Cheryl Ann Blain, Jack Thigpen, Katie Mosher, Darin Figurskey, Michael Moneypenny, Jonathan Blaes, Jeff Orrock, Rich Bandy, Carin Goodall, John G. W. Kelley, Jason Greenlaw, Micah Wengren, Dave Eslinger, Jeff Payne, Geno Olmi, John Feldt, John Schmidt, Todd Hamill, Robert Bacon, Robert Stickney, and Lundie Spence

The objective of the Coastal and Inland Flooding Observation and Warning (CI-FLOW) project is to prototype new hydrometeorologic techniques to address a critical NOAA service gap: routine total water level predictions for tidally influenced watersheds. Since February 2000, the project has focused on developing a coupled modeling system to accurately account for water at all locations in a coastal watershed by exchanging data between atmospheric, hydrologic, and hydrodynamic models. These simulations account for the quantity of water associated with waves, tides, storm surge, rivers, and rainfall, including interactions at the tidal/surge interface.

Within this project, CI-FLOW addresses the following goals: i) apply advanced weather and oceanographic monitoring and prediction techniques to the coastal environment; ii) prototype an automated hydrometeorologic data collection and prediction system; iii) facilitate interdisciplinary and multiorganizational collaborations; and iv) enhance techniques and technologies that improve actionable hydrologic/hydrodynamic information to reduce the impacts of coastal flooding. Results are presented for Hurricane Isabel (2003), Hurricane Earl (2010), and Tropical Storm Nicole (2010) for the Tar–Pamlico and Neuse River basins of North Carolina. This area was chosen, in part, because of the tremendous damage inflicted by Hurricanes Dennis and Floyd (1999). The vision is to transition CI-FLOW research findings and technologies to other U.S. coastal watersheds.

Full access