Search Results

You are looking at 1 - 10 of 37 items for

  • Author or Editor: Kevin I. Hodges x
  • Refine by Access: All Content x
Clear All Modify Search
Brian J. Hoskins
and
Kevin I. Hodges

Abstract

The aim of this paper is to explore the use of both an Eulerian and system-centered method of storm track diagnosis applied to a wide range of meteorological fields at multiple levels to provide a range of perspectives on the Northern Hemisphere winter transient motions and to give new insight into the storm track organization and behavior. The data used are primarily from the European Centre for Medium-Range Weather Forecasts reanalyses project extended with operational analyses to the period 1979–2000. This is supplemented by data from the National Centers for Environmental Prediction and Goddard Earth Observing System 1 reanalyses. The range of fields explored include the usual mean sea level pressure and the lower- and upper-tropospheric height, meridional wind, vorticity, and temperature, as well as the potential vorticity (PV) on a 330-K isentropic surface (PV330) and potential temperature on a PV = 2 PVU surface (θ PV2). As well as reporting the primary analysis based on feature tracking, the standard Eulerian 2–6-day bandpass filtered variance analysis is also reported and contrasted with the tracking diagnostics. To enable the feature points to be identified as extrema for all the chosen fields, a planetary wave background structure is removed at each data time. The bandpass filtered variance derived from the different fields yield a rich picture of the nature and comparative magnitudes of the North Pacific and Atlantic storm tracks, and of the Siberian and Mediterranean candidates for storm tracks. The feature tracking allows the cyclonic and anticyclonic activities to be considered seperately. The analysis indicates that anticyclonic features are generally much weaker with less coherence than the cyclonic systems. Cyclones and features associated with them are shown to have much greater coherence and give tracking diagnostics that create a vivid storm track picture that includes the aspects highlighted by the variances as well as highlighting aspects that are not readily available from Eulerian studies. In particular, the upper-tropospheric features as shown by negative θ PV2, for example, occur in a band spiraling around the hemisphere from the subtropical North Atlantic eastward to the high latitudes of the same ocean basin. Lower-troposphere storm tracks occupy more limited longitudinal sectors, with many of the individual storms possibly triggered from the upper-tropospheric disturbances in the spiral band of activity.

Full access
Lennart Bengtsson
,
Kevin I. Hodges
, and
Noel Keenlyside

Abstract

Extratropical cyclones and how they may change in a warmer climate have been investigated in detail with a high-resolution version of the ECHAM5 global climate model. A spectral resolution of T213 (63 km) is used for two 32-yr periods at the end of the twentieth and twenty-first centuries and integrated for the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. Extremes of pressure, vorticity, wind, and precipitation associated with the cyclones are investigated and compared with a lower-resolution simulation. Comparison with observations of extreme wind speeds indicates that the model reproduces realistic values.

This study also investigates the ability of the model to simulate extratropical cyclones by computing composites of intense storms and contrasting them with the same composites from the 40-yr ECMWF Re-Analysis (ERA-40). Composites of the time evolution of intense cyclones are reproduced with great fidelity; in particular the evolution of central surface pressure is almost exactly replicated, but vorticity, maximum wind speed, and precipitation are higher in the model. Spatial composites also show that the distributions of pressure, winds, and precipitation at different stages of the cyclone life cycle compare well with those from ERA-40, as does the vertical structure.

For the twenty-first century, changes in the distribution of storms are very similar to those of previous study. There is a small reduction in the number of cyclones but no significant changes in the extremes of wind and vorticity in both hemispheres. There are larger regional changes in agreement with previous studies.

The largest changes are in the total precipitation, where a significant increase is seen. Cumulative precipitation along the tracks of the cyclones increases by some 11% per track, or about twice the increase in global precipitation, while the extreme precipitation is close to the globally averaged increase in column water vapor (some 27%). Regionally, changes in extreme precipitation are even higher because of changes in the storm tracks.

Full access
Lennart Bengtsson
,
Kevin I. Hodges
, and
Erich Roeckner

Abstract

Extratropical and tropical transient storm tracks are investigated from the perspective of feature tracking in the ECHAM5 coupled climate model for the current and a future climate scenario. The atmosphere-only part of the model, forced by observed boundary conditions, produces results that agree well with analyses from the 40-yr ECMWF Re-Analysis (ERA-40), including the distribution of storms as a function of maximum intensity. This provides the authors with confidence in the use of the model for the climate change experiments. The statistical distribution of storm intensities is virtually preserved under climate change using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario until the end of this century. There are no indications in this study of more intense storms in the future climate, either in the Tropics or extratropics, but rather a minor reduction in the number of weaker storms. However, significant changes occur on a regional basis in the location and intensity of storm tracks. There is a clear poleward shift in the Southern Hemisphere with consequences of reduced precipitation for several areas, including southern Australia. Changes in the Northern Hemisphere are less distinct, but there are also indications of a poleward shift, a weakening of the Mediterranean storm track, and a strengthening of the storm track north of the British Isles. The tropical storm tracks undergo considerable changes including a weakening in the Atlantic sector and a strengthening and equatorward shift in the eastern Pacific. It is suggested that some of the changes, in particular the tropical ones, are due to an SST warming maximum in the eastern Pacific. The shift in the extratropical storm tracks is shown to be associated with changes in the zonal SST gradient in particular for the Southern Hemisphere.

Full access
Lizzie S. R. Froude
,
Lennart Bengtsson
, and
Kevin I. Hodges

Abstract

The prediction of extratropical cyclones by the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) ensemble prediction systems (EPSs) has been investigated using an objective feature tracking methodology to identify and track the cyclones along the forecast trajectories. Overall the results show that the ECMWF EPS has a slightly higher level of skill than the NCEP EPS in the Northern Hemisphere (NH). However in the Southern Hemisphere (SH), NCEP has higher predictive skill than ECMWF for the intensity of the cyclones. The results from both EPSs indicate a higher level of predictive skill for the position of extratropical cyclones than their intensity and show that there is a larger spread in intensity than position. Further analysis shows that the predicted propagation speed of cyclones is generally too slow for the ECMWF EPS and shows a slight bias for the intensity of the cyclones to be overpredicted. This is also true for the NCEP EPS in the SH. For the NCEP EPS in the NH the intensity of the cyclones is underpredicted. There is small bias in both the EPS for the cyclones to be displaced toward the poles. For each ensemble forecast of each cyclone, the predictive skill of the ensemble member that best predicts the cyclone’s position and intensity was computed. The results are very encouraging showing that the predictive skill of the best ensemble member is significantly higher than that of the control forecast in terms of both the position and intensity of the cyclones. The prediction of cyclones before they are identified as 850-hPa vorticity centers in the analysis cycle was also considered. It is shown that an indication of extratropical cyclones can be given by at least 1 ensemble member 7 days before they are identified in the analysis. Further analysis of the ECMWF EPS shows that the ensemble mean has a higher level of skill than the control forecast, particularly for the intensity of the cyclones, from day 3 of the forecast. There is a higher level of skill in the NH than the SH and the spread in the SH is correspondingly larger. The difference between the ensemble mean error and spread is very small for the position of the cyclones, but the spread of the ensemble is smaller than the ensemble mean error for the intensity of the cyclones in both hemispheres. Results also show that the ECMWF control forecast has ½ to 1 day more skill than the perturbed members, for both the position and intensity of the cyclones, throughout the forecast.

Full access
Lizzie S. R. Froude
,
Lennart Bengtsson
, and
Kevin I. Hodges

Abstract

A new method for assessing forecast skill and predictability that involves the identification and tracking of extratropical cyclones has been developed and implemented to obtain detailed information about the prediction of cyclones that cannot be obtained from more conventional analysis methodologies. The cyclones were identified and tracked along the forecast trajectories, and statistics were generated to determine the rate at which the position and intensity of the forecasted storms diverge from the analyzed tracks as a function of forecast lead time. The results show a higher level of skill in predicting the position of extratropical cyclones than the intensity. They also show that there is potential to improve the skill in predicting the position by 1–1.5 days and the intensity by 2–3 days, via improvements to the forecast model. Further analysis shows that forecasted storms move at a slower speed than analyzed storms on average and that there is a larger error in the predicted amplitudes of intense storms than the weaker storms. The results also show that some storms can be predicted up to 3 days before they are identified as an 850-hPa vorticity center in the analyses. In general, the results show a higher level of skill in the Northern Hemisphere (NH) than the Southern Hemisphere (SH); however, the rapid growth of NH winter storms is not very well predicted. The impact that observations of different types have on the prediction of the extratropical cyclones has also been explored, using forecasts integrated from analyses that were constructed from reduced observing systems. A terrestrial, satellite, and surface-based system were investigated and the results showed that the predictive skill of the terrestrial system was superior to the satellite system in the NH. Further analysis showed that the satellite system was not very good at predicting the growth of the storms. In the SH the terrestrial system has significantly less skill than the satellite system, highlighting the dominance of satellite observations in this hemisphere. The surface system has very poor predictive skill in both hemispheres.

Full access
Yuling Yao
,
Yang Zhang
,
Kevin I. Hodges
, and
Talia Tamarin-Brodsky

Abstract

Extratropical cyclones (ETCs) are three-dimensional synoptic systems in the middle and high latitudes. Previous studies on ETC propagation have typically focused on cyclones identified at a single level. However, more recent studies have found that ETCs have diverse vertical structures and cyclones with different vertical extents always exhibit distinct characteristics and surface impacts. In this work, we study the movement of wintertime (December–February) extratropical cyclones by classifying North Pacific ETCs into deep cyclones, shallow low-level cyclones, and shallow upper-level cyclones, based on reanalysis data from 1979 to 2019. Applying a Lagrangian perspective, we track the cyclones at different vertical levels to investigate the different characteristics and mechanisms for the propagation of deep and shallow ETCs. A potential vorticity (PV) tendency analysis of cyclone-tracking composites reveals that, for deep cyclones, the diabatic heating at 850 hPa and the horizontal advection by the stationary flow at 500 hPa are the main contributors to the poleward movement. For shallow cyclones, the nonlinear advection terms play a dominant role in their meridional motion, advecting shallow low-level cyclones poleward but shallow upper-level cyclones equatorward. A piecewise PV inversion analysis suggests that the nonlinear advection by winds induced from upper-level PV anomalies is responsible for the different performance of nonlinear advection terms for shallow low-level and upper-level cyclones. These findings further our understanding of the mechanisms and variations of cyclone propagation.

Significance Statement

Extratropical cyclones (ETCs) can be identified at different levels in the troposphere. These mobile low pressure cyclonic storms are the main sources of synoptic variability in the extratropics and often bring severe or even disastrous weather. Previous studies on ETC movement have typically been restricted to cyclones identified at a single level. Our study, by identifying ETCs at multiple levels, classifies cyclones into deep, shallow low-level, and shallow upper-level cyclones. For deep cyclones, their poleward movement is found to be a result of diabatic heating at lower levels and dominated by the stationary circulation at upper levels. For shallow cyclones, nonlinear advection determines whether they propagate poleward or equatorward. These findings further our understanding of the mechanisms of cyclone propagation and imply that the movement of deep and shallow cyclones may undergo different changes with different weather and climate impacts in the future, given the enhanced diabatic heating under global warming, which deserves further investigation.

Restricted access
Daniel J. Befort
,
Kevin I. Hodges
, and
Antje Weisheimer

Abstract

In this study, tropical cyclones (TCs) over the western North Pacific (WNP) and North Atlantic (NA) basins are analyzed in seasonal forecasting models from five European modeling centers. Most models are able to capture the observed seasonal cycle of TC frequencies over both basins; however, large differences for numbers and spatial track densities are found. In agreement with previous studies, TC numbers are often underestimated, which is likely related to coarse model resolutions. Besides shortcomings in TC characteristics, significant positive skill (deterministic and probabilistic) in predicting TC numbers and accumulated cyclone energy is found over both basins. Whereas the predictions of TC numbers over the WNP basin are mostly unreliable, most seasonal forecast provide reliable predictions for the NA basin. Besides positive skill over the entire NA basin, all seasonal forecasting models are skillful in predicting the interannual TC variability over a region covering the Caribbean and North American coastline, suggesting that the models carry useful information, including for adaptation and mitigation purposes ahead of the upcoming TC season. However, skill in all forecast models over a smaller region centered along the Asian coastline is smaller compared to their skill in the entire WNP basin.

Open access
Jennifer L. Catto
,
Len C. Shaffrey
, and
Kevin I. Hodges

Abstract

Changes to the Northern Hemisphere winter (December–February) extratropical storm tracks and cyclones in a warming climate are investigated. Two idealized climate change experiments with the High Resolution Global Environmental Model version 1.1 (HiGEM1.1), a doubled CO2 and a quadrupled CO2 experiment, are compared against a present-day control run. An objective feature tracking method is used and a focus is given to regional changes. The climatology of extratropical storm tracks from the control run is shown to be in good agreement with the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40), while the frequency distribution of cyclone intensity also compares well.

In both simulations the mean climate changes are generally consistent with the simulations of the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) models, with strongly enhanced surface warming at the winter pole and reduced lower-tropospheric warming over the North Atlantic Ocean associated with the slowdown of the meridional overturning circulation. The circulation changes in the North Atlantic are different between the two idealized simulations with different CO2 forcings. In the North Atlantic the storm tracks are influenced by the slowdown of the MOC, the enhanced surface polar warming, and the enhanced upper tropical-troposphere warming, giving a northeastward shift of the storm tracks in the 2 × CO2 experiment but no shift in the 4 × CO2 experiment.

Over the Pacific, in the 2 × CO2 experiment, changes in the mean climate are associated with local temperature changes, while in the 4 × CO2 experiment the changes in the Pacific are impacted by the weakened tropical circulation. The storm-track changes are consistent with the shifts in the zonal wind.

Total cyclone numbers are found to decrease over the Northern Hemisphere with increasing CO2 forcing. Changes in cyclone intensity are found using 850-hPa vorticity, mean sea level pressure, and 850-hPa winds. The intensity of the Northern Hemisphere cyclones is found to decrease relative to the control.

Full access
Katherine E. Lukens
,
Ernesto Hugo Berbery
, and
Kevin I. Hodges

Abstract

Northern Hemisphere winter storm tracks and their relation to winter weather are investigated using NCEP CFSR data. Storm tracks are described by isentropic PV maxima within a Lagrangian framework; these correspond well with those described in previous studies. The current diagnostics focus on strong-storm tracks, which comprise storms that achieve a maximum PV exceeding the mean value by one standard deviation. Large increases in diabatic heating related to deep convection occur where the storm tracks are most intense. The cyclogenesis pattern shows that strong storms generally develop on the upstream sectors of the tracks. Intensification happens toward the eastern North Pacific and all across the North Atlantic Ocean, where enhanced storm-track-related weather is found. In this study, the relation of storm tracks to near-surface winds and precipitation is evaluated. The largest increases in storm-track-related winds are found where strong storms tend to develop and intensify, while storm precipitation is enhanced in areas where the storm tracks have their highest intensity. Strong storms represent about 16% of all storms but contribute 30%–50% of the storm precipitation in the storm-track regions. Both strong-storm-related winds and precipitation are prone to cause storm-related losses in the eastern U.S. and North American coasts. Over the oceans, maritime operations are expected to be most vulnerable to damage offshore of the U.S. coasts. Despite making up a small fraction of all storms, the strong-storm tracks have a significant imprint on winter weather in North America potentially leading to structural and economic loss.

Full access
Julia Curio
,
Reinhard Schiemannm
,
Kevin I. Hodges
, and
Andrew G. Turner

Abstract

The Tibetan Plateau (TP) and surrounding high mountains constitute an important forcing of the atmospheric circulation due to their height and extent, and thereby impact weather and climate in downstream regions of East Asia. Mesoscale Tibetan Plateau vortices (TPVs) are one of the major precipitation-producing systems on the TP. A fraction of TPVs move off the TP to the east and can trigger extreme precipitation in parts of China, such as the Sichuan province and the Yangtze River valley, which can result in severe flooding. In this study, the climatology of TPV occurrence is examined in two reanalyses and, for the first time, in a high-resolution global climate model using an objective feature tracking algorithm. Most TPVs are generated in the northwestern part of the TP; the center of this main genesis region is small and stable throughout the year. The strength and position of the subtropical westerly jet is correlated to the distance TPVs can travel eastward and therefore could have an effect on whether or not a TPV is moving off the TP. TPV-associated precipitation can account for up to 40% of the total precipitation in parts of China in selected months, often due to individual TPVs. The results show that the global climate model is able to simulate TPVs at N512 (~25 km) horizontal resolution and in general agrees with the reanalyses. The fact that the global climate model can represent the TPV climatology opens a wide range of options for future model-based research on TPVs.

Open access