Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: Kevin J. E. Walsh x
  • All content x
Clear All Modify Search
Kevin J. E. Walsh and Jack J. Katzfey

Abstract

A regional climate model (DARLAM) is implemented over the Australian region and a 20-yr seasonally varying simulation is examined for the presence of tropical cyclone–like vortices (TCLVs). The horizontal resolution of the model is 125 km with nine vertical levels and is forced at its boundaries by the output of the Commonwealth Scientific and Industrial Research Organisation GCM using a mixed layer (or “slab”) ocean. Additional simulations are performed with a horizontal resolution of 30 km and with 18 vertical levels to examine the impact of increasing resolution on storm intensity. A sample of TCLVs from the 125-km resolution simulation is simulated at 30-km resolution to determine whether they reach observed tropical storm intensity at the finer resolution. It is found that stronger vortices in the 125-km resolution simulation are more likely to intensify when simulated at finer resolution than weaker vortices. In this way, a detection threshold for vortices generated in the 125-km resolution simulation is established and then used to detect TCLVs in that simulation. The regional climate model DARLAM provides a good simulation of both cyclogenesis and its seasonal variation under the current climate. The response of the model under enhanced greenhouse conditions is studied. Under 2 × CO2 conditions, there is no statistically significant change in regions of formation of TCLVs, with only a slight southward shift simulated. Nevertheless, there are statistically significant effects on the poleward movement of TCLVs, with storms generally tending to travel farther poleward in a warmer climate once they have formed. An analysis is undertaken to determine the reasons for this behavior. While the dynamical constraints on the maintenance of TCLV intensity under 2 × CO2 conditions (e.g., vertical wind shear) are similar to those in the current climate, thermodynamic conditions (e.g., sea surface temperatures) are quite different and are likely to be at least partly the cause of this effect. Other causes include the combination of the slight southward shift in formation and a tendency for TCLV tracks to be more southward in enhanced greenhouse conditions, a consequence of more southward steering winds.

Full access
Savin S. Chand and Kevin J. E. Walsh

Abstract

This study presents a binary classification model for the prediction of tropical cyclone (TC) activity in the Fiji, Samoa, and Tonga regions (the FST region) using the accumulated cyclone energy (ACE) as a proxy of TC activity. A probit regression model, which is a suitable probability model for describing binary response data, is developed to determine at least a few months in advance (by July in this case) the probability that an upcoming TC season may have for high or low TC activity. Years of “high TC activity” are defined as those years when ACE values exceeded the sample climatology (i.e., the 1985–2008 mean value). Model parameters are determined using the Bayesian method. Various combinations of the El Niño–Southern Oscillation (ENSO) indices and large-scale environmental conditions that are known to affect TCs in the FST region are examined as potential predictors. It was found that a set of predictors comprising low-level relative vorticity, upper-level divergence, and midtropspheric relative humidity provided the best skill in terms of minimum hindcast error. Results based on hindcast verification clearly suggest that the model predicts TC activity in the FST region with substantial skill up to the May–July preseason for all years considered in the analysis, in particular for ENSO-neutral years when TC activity is known to show large variations.

Full access
Savin S. Chand and Kevin J. E. Walsh

Abstract

An objective methodology for forecasting the probability of tropical cyclone (TC) formation in the Fiji, Samoa, and Tonga regions (collectively the FST region) using antecedent large-scale environmental conditions is investigated. Three separate probabilistic forecast schemes are developed using a probit regression approach where model parameters are determined via Bayesian fitting. These schemes provide forecasts of TC formation from an existing system (i) within the next 24 h (W24h), (ii) within the next 48 h (W48h), and (iii) within the next 72 h (W72h). To assess the performance of the three forecast schemes in practice, verification methods such as the posterior expected error, Brier skill scores, and relative operating characteristic skill scores are applied. Results suggest that the W24h scheme, which is formulated using large-scale environmental parameters, on average, performs better than that formulated using climatology and persistence (CLIPER) variables. In contrast, the W48h (W72h) scheme formulated using large-scale environmental parameters performs similar to (poorer than) that formulated using CLIPER variables. Therefore, large-scale environmental parameters (CLIPER variables) are preferred as predictors when forecasting TC formation in the FST region within 24 h (at least 48 h) using models formulated in the present investigation.

Full access
Savin S. Chand and Kevin J. E. Walsh

Abstract

This study examines the modulation of tropical cyclone (TC) activity by the Madden–Julian oscillation (MJO) in the Fiji, Samoa, and Tonga regions (FST region), using Joint Typhoon Warning Center best-track cyclone data and the MJO index developed by Wheeler and Hendon. Results suggest strong MJO–TC relationships in the FST region. The TC genesis patterns are significantly altered over the FST region with approximately 5 times more cyclones forming in the active phase than in the inactive phase of the MJO. This modulation is further strengthened during El Niño periods. The large-scale environmental conditions (i.e., low-level relative vorticity, upper-level divergence, and vertical wind shear) associated with TC genesis show a distinct patterns of variability for the active and inactive MJO phases. The MJO also has a significant effect on hurricane category and combined gale and storm category cyclones in the FST region. The occurrences of both these cyclone categories are increased in the active phase of the MJO, which is associated with enhanced convective activity. The TCs in the other MJO phases where convective activity is relatively low, however, show a consistent pattern of increase in hurricane category cyclones and a concomitant decrease in gale and storm category cyclones. Finally, TC tracks in different MJO phases are also objectively described using a cluster analysis technique. Patterns seen in the clustered track regimes are well explained here in terms of 700–500-hPa mean steering flow.

Full access
Kevin J. E. Walsh and Brian F. Ryan

Abstract

Idealized tropical cyclones are inserted into a regional climate model and the resulting intensity evolution of the storms is examined under current and enhanced greenhouse climates. The regional climate model is implemented over a model domain near Australia. In general, storm intensities increase under enhanced greenhouse conditions, although these increases are mostly not statistically significant. The simulated intensities are compared to theoretically derived estimates of maximum potential intensity. The theoretical estimates are mostly larger than the simulated intensities, suggesting that other factors may be limiting the intensification of the storms. Two such factors are suggested: the limited horizontal resolution of the storm simulations and the presence of vertical wind shear. Significant regression relations are demonstrated between maximum intensity of the simulated storms as predicted by sea surface temperature and vertical wind shear variations, while much weaker relationships are shown between maximum intensity and sea surface temperature alone. This suggests that dynamical influences such as vertical wind shear, which are not included in theoretical estimates of maximum potential intensity, act to restrict the development of the storm and thereby its maximum intensity.

Full access
Surendra P. Rauniyar and Kevin J. E. Walsh

Abstract

This study examines the influence of ENSO on the diurnal cycle of rainfall during boreal winter for the period 1998–2010 over the Maritime Continent (MC) and Australia using Tropical Rainfall Measuring Mission (TRMM) and reanalysis data. The diurnal cycles are composited for the ENSO cold (La Niña) and warm (El Niño) phases. The k-means clustering technique is then applied to group the TRMM data into six clusters, each with a distinct diurnal cycle. Despite the alternating patterns of widespread large-scale subsidence and ascent associated with the Walker circulation, which dominates the climate over the MC during the opposing phases of ENSO, many of the islands of the MC show localized differences in rainfall anomalies that depend on the local geography and orography. While ocean regions mostly experience positive rainfall anomalies during La Niña, some local regions over the islands have more rainfall during El Niño. These local features are also associated with anomalies in the amplitude and characteristics of the diurnal cycle in these regions. These differences are also well depicted in large-scale dynamical fields derived from the interim ECMWF Re-Analysis (ERA-Interim).

Full access
Savin S. Chand and Kevin J. E. Walsh

Abstract

This study examines the variations in tropical cyclone (TC) genesis positions and their subsequent tracks for different phases of the El Niño–Southern Oscillation (ENSO) phenomenon in the Fiji, Samoa, and Tonga region (FST region) using Joint Typhoon Warning Center best-track data. Over the 36-yr period from 1970/71 to 2005/06, 122 cyclones are observed in the FST region. A large spread in the genesis positions is noted. During El Niño years, genesis is enhanced east of the date line, extending from north of Fiji to over Samoa, with the highest density centered around 10°S, 180°. During neutral years, maximum genesis occurs immediately north of Fiji with enhanced genesis south of Samoa. In La Niña years, there are fewer cyclones forming in the region than during El Niño and neutral years. During La Niña years, the genesis positions are displaced poleward of 12°S, with maximum density centered around 15°S, 170°E and south of Fiji. The cyclone tracks over the FST region are also investigated using cluster analysis. Tracks during the period 1970/71–2005/06 are conveniently described using three separate clusters, with distinct characteristics associated with different ENSO phases. Finally, the role of large-scale environmental factors affecting interannual variability of TC genesis positions and their subsequent tracks in the FST region are investigated. Favorable genesis positions are observed where large-scale environments have the following seasonal average thresholds: (i) 850-hPa cyclonic relative vorticity between −16 and −4 (×10−6 s−1), (ii) 200-hPa divergence between 2 and 8 (×10−6 s−1), and (iii) environmental vertical wind shear between 0 and 8 m s−1. The subsequent TC tracks are observed to be steered by mean 700–500-hPa winds.

Full access
Surendra P. Rauniyar and Kevin J. E. Walsh

Abstract

The influence of the MJO on the phase and amplitude of the diurnal cycle of rainfall during Australian summer [December–February (DJF)] over the Maritime Continent (MC) and northern Australia is investigated using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 3G68 datasets. The gridded rainfall was partitioned into MJO categories (active, suppressed, and weak) based on their longitudinal position and by utilizing the real-time multivariate MJO (RMM) index of Wheeler and Hendon. The diurnal cycles were composited and an empirical orthogonal function (EOF) analysis was applied to extract the spatial and temporal variability.

Distinct variations in the rainfall distribution pattern among categories of the MJO over land and ocean are seen. The result of the composite-mean rainfall distribution shows that the average daily rainfall rate over islands is higher during suppressed MJO days, while for surrounding oceans and northern regions of Australia, more rainfall occurs during MJO active days. The normalized relative amplitude (NRA) of the diurnal cycle of rainfall shows that morning rainfall near coastal areas during active days of the MJO is 1.5 times greater than the climatological-mean rainfall but is less than or equal to the climatological mean during other phases of the MJO. Similarly, during the suppressed phase of the MJO evening rainfall is greater over the islands than in other MJO phases. The first two modes of the EOF alone explain more than 88% (65%) of the variance for the 3B42 (3G68) rainfall, and the corresponding principal component time series show a marked diurnal cycle. The results show that both the amplitude and phase of the diurnal cycle of rainfall are modulated by the categories of the MJO. In general, the peak in the diurnal cycle for active (suppressed/weak) days of the MJO lags (leads) the peak in the diurnal cycle for total rainfall by 2 h. Over Darwin and its adjacent regions, the active phase of the MJO is responsible for the occurrence of maximum rainfall after midnight, which is unusual in this region.

Full access
Savin S. Chand and Kevin J. E. Walsh

Abstract

This study examines the variation in tropical cyclone (TC) intensity for different phases of the El Niño–Southern Oscillation (ENSO) phenomenon in the Fiji, Samoa, and Tonga (FST) region. The variation in TC intensity is inferred from the accumulated cyclone energy (ACE), which is constructed from the 6-hourly Joint Typhoon Warning Center best-track data for the period 1985–2006. Overall, results suggest that ACE in the FST region is considerably influenced by the ENSO signal. A substantial contribution to this ENSO signal in ACE comes from the region equatorward of 15°S where TC numbers, lifetime, and intensity all play a significant role. However, the ACE–ENSO relationship weakens substantially poleward of 15°S where large-scale environmental variables affecting TC intensity are found to be less favorable during El Niño years than during La Niña years; in the region equatorward of 15°S, the reverse is true. Therefore, TCs entering this region poleward of 15°S are able to sustain their intensity for a longer period of time during La Niña years as opposed to TCs entering the region during El Niño years, when they decay more rapidly.

Full access
Anil Deo, S. Joseph Munchak, and Kevin J. E. Walsh

Abstract

This study cross validates the radar reflectivity Z; the rainfall drop size distribution parameter (median volume diameter D o); and the rainfall rate R estimated from the Tropical Rainfall Measuring Mission (TRMM) satellite Precipitation Radar (PR), a combined PR and TRMM Microwave Imager (TMI) algorithm (COM), and a C-band dual-polarized ground radar (GR) for TRMM overpasses during the passage of tropical cyclone (TC) and non-TC events over Darwin, Australia. Two overpass events during the passage of TC Carlos and 11 non-TC overpass events are used in this study, and the GR is taken as the reference. It is shown that the correspondence is dependent on the precipitation type whereby events with more (less) stratiform rainfall usually have a positive (negative) bias in the reflectivity and the rainfall rate, whereas in the D o the bias is generally positive but small (large). The COM reflectivity estimates are similar to the PR, but it has a smaller bias in the D o for most of the greater stratiform events. This suggests that combining the TMI with the PR adjusts the D o toward the “correct” direction if the GR is taken as the reference. Moreover, the association between the TRMM estimates and the GR for the two TC events, which are highly stratiform in nature, is similar to that observed for the highly stratiform non-TC events (there is no significant difference), but it differs considerably from that observed for the majority of the highly convective non-TC events.

Full access