Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Kevin J. Mallen x
  • All content x
Clear All Modify Search
Kevin J. Mallen, Michael T. Montgomery, and Bin Wang


Recent theoretical studies, based on vortex Rossby wave (VRW) dynamics, have established the importance of the radial structure of the primary circulation in the response of tropical cyclone (TC)–like vortices to ambient vertical wind shear. Linear VRW theory suggests, in particular, that the degree of broadness of the primary circulation in the near-core region beyond the radius of maximum wind strongly influences whether a tilted TC vortex will realign and resist vertical shear or tilt over and shear apart. Fully nonlinear numerical simulations have verified that the vortex resiliency is indeed sensitive to the initial radial structure of the idealized vortex. This raises the question of how well the “true” nature of a TC’s primary circulation is represented by idealized vortices that are commonly used in some theoretical studies.

In this paper the swirling wind structure of TCs is reexamined by utilizing flight-level observations collected from Atlantic and eastern Pacific storms during 1977–2001. Hundreds of radial profiles of azimuthal-mean tangential wind and relative vorticity are constructed from over 5000 radial flight leg segments and compared with some standard idealized vortex profiles. This analysis reaffirms that real TC structure in the near-core region is characterized by relatively slow tangential wind decay in conjunction with a skirt of significant cyclonic relative vorticity possessing a negative radial gradient. This broadness of the primary circulation is conspicuously absent in some idealized vortices used in theoretical studies of TC evolution in vertical shear. The relationship of the current findings to the problem of TC resiliency is discussed.

Full access
Scott A. Braun, Michael T. Montgomery, Kevin J. Mallen, and Paul D. Reasor


Several hypotheses have been put forward for the mechanisms of generation of surface circulation associated with tropical cyclones. This paper examines high-resolution simulations of Tropical Storm Gert (2005), which formed in the Gulf of Mexico during NASA’s Tropical Cloud Systems and Processes Experiment, to investigate the development of low-level circulation and its relationship to the precipitation evolution. Two simulations are examined: one that better matches available observations but underpredicts the storm’s minimum sea level pressure and a second one that somewhat overintensifies the storm but provides a set of simulations that encapsulates the overall genesis and development characteristics of the observed storm. The roles of convective and stratiform precipitation processes within the mesoscale precipitation systems that formed Gert are discussed. During 21–25 July, two episodes of convective system development occurred. In each, precipitation system evolution was characterized by intense and deep convective upward motions followed by increasing stratiform-type vertical motions (upper-level ascent, low-level descent). Potential vorticity (PV) in convective regions was strongest at low levels while stratiform-region PV was strongest at midlevels, suggesting that convective processes acted to spin up lower levels prior to the spinup of middle levels by stratiform processes. Intense vortical hot towers (VHTs) were prominent features of the low-level cyclonic vorticity field. The most prominent PV anomalies persisted more than 6 h and were often associated with localized minima in the sea level pressure field. A gradual aggregation of the cyclonic PV occurred as existing VHTs near the center continually merged with new VHTs, gradually increasing the mean vorticity near the center. Nearly concurrently with this VHT-induced development, stratiform precipitation processes strongly enhanced the mean inflow and convergence at middle levels, rapidly increasing the midlevel vorticity. However, the stratiform vertical motion profile is such that while it increases midlevel vorticity, it decreases vorticity near the surface as a result of low-level divergence. Consequently, the results suggest that while stratiform precipitation regions may significantly increase cyclonic circulation at midlevels, convective vortex enhancement at low to midlevels is likely necessary for genesis.

Full access