Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Kevin R. Haghi x
  • All content x
Clear All Modify Search
Kevin R. Haghi and Dale R. Durran

Abstract

The dynamics of a prototypical atmospheric bore are investigated through a series of two-dimensional numerical simulations and linear theory. These simulations demonstrate that the bore dynamics are inherently finite amplitude. Although the environment supports linear trapped waves, the supported waves propagate in roughly the opposite direction to that of the bore. Qualitative analysis of the Scorer parameter can therefore give misleading indications of the potential for wave trapping, and linear internal gravity wave dynamics do not govern the behavior of the bore. The presence of a layer of enhanced static stability below a deep layer of lower stability, as would be created by a nocturnal inversion, was not necessary for the development of a bore. The key environmental factor allowing bore propagation was the presence of a low-level jet directed opposite to the movement of the bore. Significant turbulence developed in the layer between the jet maximum and the surface, which reduced the low-level static stability behind the bore. Given the essential role of jets and thereby strong environmental wind shear, and given that idealized bores may persist in environments in which the static stability is constant with height, shallow-water dynamics do not appear to be quantitatively applicable to atmospheric bores propagating against low-level jets, although there are qualitative analogies.

Restricted access
Kevin R. Haghi, David B. Parsons, and Alan Shapiro

Abstract

This study documents atmospheric bores and other convergent boundaries in the southern Great Plains’ nocturnal environment during the IHOP_2002 summer campaign. Observational evidence demonstrates that convective outflows routinely generate bores. Statistically resampled flow regimes, derived from an adaptation of hydraulic theory, agree well with observations. Specifically, convective outflows within the observed environments are likely to produce a partially blocked flow regime, which is a favorable condition for generating a bore. Once a bore develops, the direction of movement generally follows the orientation of the bulk shear vector between the nose of the nocturnal low-level jet and a height of 1.5 or 2.5 km AGL. This relationship is believed to be a consequence of wave trapping through the curvature of the horizontal wind with respect to height. This conclusion comes after analyzing the profile of the Scorer parameter. Overall, these findings provide an impetus for future investigations aimed at understanding and predicting nocturnal deep convection over this region.

Full access
Aaron Johnson, Xuguang Wang, Kevin R. Haghi, and David B. Parsons

Abstract

This paper presents a case study from an intensive observing period (IOP) during the Plains Elevated Convection at Night (PECAN) field experiment that was focused on a bore generated by nocturnal convection. Observations from PECAN IOP 25 on 11 July 2015 are used to evaluate the performance of high-resolution Weather Research and Forecasting Model forecasts, initialized using the Gridpoint Statistical Interpolation (GSI)-based ensemble Kalman filter. The focus is on understanding model errors and sensitivities in order to guide forecast improvements for bores associated with nocturnal convection. Model simulations of the bore amplitude are compared against eight retrieved vertical cross sections through the bore during the IOP. Sensitivities of forecasts to microphysics and planetary boundary layer (PBL) parameterizations are also investigated. Forecasts initialized before the bore pulls away from the convection show a more realistic bore than forecasts initialized later from analyses of the bore itself, in part due to the smoothing of the existing bore in the ensemble mean. Experiments show that the different microphysics schemes impact the quality of the simulations with unrealistically weak cold pools and bores with the Thompson and Morrison microphysics schemes, cold pools too strong with the WDM6 and more accurate with the WSM6 schemes. Most PBL schemes produced a realistic bore response to the cold pool, with the exception of the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme, which creates too much turbulent mixing atop the bore. A new method of objectively estimating the depth of the near-surface stable layer corresponding to a simple two-layer model is also introduced, and the impacts of turbulent mixing on this estimate are discussed.

Full access
Benjamin T. Blake, David B. Parsons, Kevin R. Haghi, and Stephen G. Castleberry

Abstract

Previous studies have documented a nocturnal maximum in thunderstorm frequency during the summer across the central United States. Forecast skill for these systems remains relatively low and the explanation for this nocturnal maximum is still an area of active debate. This study utilized the WRF-ARW Model to simulate a nocturnal mesoscale convective system that occurred over the southern Great Plains on 3–4 June 2013. A low-level jet transported a narrow corridor of air above the nocturnal boundary layer with convective instability that exceeded what was observed in the daytime boundary layer. The storm was elevated and associated with bores that assisted in the maintenance of the system. Three-dimensional variations in the system’s structure were found along the cold pool, which were examined using convective system dynamics and wave theory. Shallow lifting occurred on the southern flank of the storm. Conversely, the southeastern flank had deep lifting, with favorable integrated vertical shear over the layer of maximum CAPE. The bore assisted in transporting high-CAPE air toward its LFC, and the additional lifting by the density current allowed for deep convection to occur. The bore was not coupled to the convective system and it slowly pulled away, while the convection remained in phase with the density current. These results provide a possible explanation for how convection is maintained at night in the presence of a low-level jet and a stable boundary layer, and emphasize the importance of the three-dimensionality of these systems.

Full access
David B. Parsons, Kevin R. Haghi, Kelton T. Halbert, Blake Elmer, and Junhong Wang

Abstract

This investigation explores the relationship among bores, gravity waves, and convection within the nocturnal environment through the utilization of measurements taken during the International H2O Project (IHOP_2002) over the Southern Great Plains. The most favorable conditions for deep convection were found to occur within the boundary layer during the late afternoon and early evening hours in association with the diurnal cycle of solar insolation. At night, the layers most favorable for deep convection occur at and above the height of the nocturnal southerly low-level jet in association with distinct maxima in both the southerly and westerly components of the wind. Observations taken during the passage of 13 nocturnal wave disturbances over a comprehensive profiling site show the average maximum and net upward displacements with these waves were estimated to be ~900 and ~660 m, respectively. The lifting was not limited to the stable boundary layer, but reached into the conditionally unstable layers aloft. Since the net upward displacements persisted for many hours as the disturbances propagated away from the convection, areas well in excess of 10 000 km2 are likely impacted by this ascent. This lifting can directly maintain existing convection and aid in the initiation of new convection by reducing the convective inhibition in the vicinity of the active convection. In agreement with past studies, strong ascent in the lowest ~1.5 km was generally consistent with the passage of a bore. However, separate wave responses also occurred well above the bores, and low-frequency gravity waves may explain such disturbances.

Full access
Kevin R. Haghi, Bart Geerts, Hristo G. Chipilski, Aaron Johnson, Samuel Degelia, David Imy, David B. Parsons, Rebecca D. Adams-Selin, David D. Turner, and Xuguang Wang

Abstract

There has been a recent wave of attention given to atmospheric bores in order to understand how they evolve and initiate and maintain convection during the night. This surge is attributable to data collected during the 2015 Plains Elevated Convection at Night (PECAN) field campaign. A salient aspect of the PECAN project is its focus on using multiple observational platforms to better understand convective outflow boundaries that intrude into the stable boundary layer and induce the development of atmospheric bores. The intent of this article is threefold: 1) to educate the reader on current and future foci of bore research, 2) to present how PECAN observations will facilitate aforementioned research, and 3) to stimulate multidisciplinary collaborative efforts across other closely related fields in an effort to push the limitations of prediction of nocturnal convection.

Open access
Bart Geerts, David Parsons, Conrad L. Ziegler, Tammy M. Weckwerth, Michael I. Biggerstaff, Richard D. Clark, Michael C. Coniglio, Belay B. Demoz, Richard A. Ferrare, William A. Gallus Jr., Kevin Haghi, John M. Hanesiak, Petra M. Klein, Kevin R. Knupp, Karen Kosiba, Greg M. McFarquhar, James A. Moore, Amin R. Nehrir, Matthew D. Parker, James O. Pinto, Robert M. Rauber, Russ S. Schumacher, David D. Turner, Qing Wang, Xuguang Wang, Zhien Wang, and Joshua Wurman

Abstract

The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.

To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.

Full access