Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Kevin Robbins x
  • Refine by Access: All Content x
Clear All Modify Search

Toward Regional Climate Services

The Role of NOAA's Regional Climate Centers

Arthur T. DeGaetano
,
Timothy J. Brown
,
Steven D. Hilberg
,
Kelly Redmond
,
Kevin Robbins
,
Peter Robinson
,
Martha Shulski
, and
Marjorie McGuirk

For 25 yr, the Regional Climate Center (RCC) program has provided climate services to six regions encompassing the United States. The service provided by the RCCs has evolved through this time to become an efficient, user-driven program that exemplifies many of the components that have been cited for effective national climate services. To illustrate the RCCs' role as operational climate service providers, a brief history of the program is presented with recent examples of RCC innovations in the provision and creation of data products and decision tools, computer infrastructure, and the integration of climate data across networks. These strengths complement the missions of other federal climate service providers and regional and state-based programs, such as the Regional Integrated Sciences and Assessments, state climatologist programs, and National Weather Service climate services program managers and local focal points with which the RCCs actively partner.

Building on this expertise, a vision for the RCC role in climate services during the next quarter century is presented. This strategy includes five main components encompassing 1) operational linkage of an array of climate data sources with climate products, tools, and monitoring systems; 2) engagement of new and existing climate service partners to reduce the risk associated with climate impacts; 3) implementation of innovative user-driven approaches to regional and local climate services; 4) climate data stewardship; and 5) scientifically sound assessments and solutions to climate-related problems through active stakeholder collaboration and engagement. These elements will be equally applicable and important to decisions related to the historical climate record, real-time interannual climate variations, or future climate change assessment and adaptation activities.

Full access
Kevin R. Wood
,
Steven R. Jayne
,
Calvin W. Mordy
,
Nicholas Bond
,
James E. Overland
,
Carol Ladd
,
Phyllis J. Stabeno
,
Alexander K. Ekholm
,
Pelle E. Robbins
,
Mary-Beth Schreck
,
Rebecca Heim
, and
Janet Intrieri

Abstract

Seasonally ice-covered marginal seas are among the most difficult regions in the Arctic to study. Physical constraints imposed by the variable presence of sea ice in all stages of growth and melt make the upper water column and air–sea ice interface especially challenging to observe. At the same time, the flow of solar energy through Alaska’s marginal seas is one of the most important regulators of their weather and climate, sea ice cover, and ecosystems. The deficiency of observing systems in these areas hampers forecast services in the region and is a major contributor to large uncertainties in modeling and related climate projections. The Arctic Heat Open Science Experiment strives to fill this observation gap with an array of innovative autonomous floats and other near-real-time weather and ocean sensing systems. These capabilities allow continuous monitoring of the seasonally evolving state of the Chukchi Sea, including its heat content. Data collected by this project are distributed in near–real time on project websites and on the Global Telecommunications System (GTS), with the objectives of (i) providing timely delivery of observations for use in weather and sea ice forecasts, for model, and for reanalysis applications and (ii) supporting ongoing research activities across disciplines. This research supports improved forecast services that protect and enhance the safety and economic viability of maritime and coastal community activities in Alaska. Data are free and open to all (see www.pmel.noaa.gov/arctic-heat/).

Full access