Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Kevin W. Bowman x
  • Refine by Access: All Content x
Clear All Modify Search
Jack Fishman, Kevin W. Bowman, John P. Burrows, Andreas Richter, Kelly V. Chance, David P. Edwards, Randall V. Martin, Gary A. Morris, R. Bradley Pierce, Jerald R. Ziemke, Jassim A. Al-Saadi, John K. Creilson, Todd K. Schaack, and Anne M. Thompson

We review the progress of tropospheric trace gas observations and address the need for additional measurement capabilities as recommended by the National Research Council. Tropospheric measurements show pollution in the Northern Hemisphere as a result of fossil fuel burning and a strong seasonal dependence with the largest amounts of carbon monoxide and nitrogen dioxide in the winter and spring. In the summer, when photochemistry is most intense, photochemically generated ozone is found in large concentrations over and downwind from where anthropogenic sources are largest, such as the eastern United States and eastern China. In the tropics and the subtropics, where photon flux is strong throughout the year, trace gas concentrations are driven by the abundance of the emissions. The largest single tropical source of pollution is biomass burning, as can be seen readily in carbon monoxide measurements, but lightning and biogenic trace gases may also contribute to trace gas variability. Although substantive progress has been achieved in seasonal and global mapping of a few tropospheric trace gases, satellite trace gas observations with considerably better temporal and spatial resolution are essential to forecasting air quality at the spatial and temporal scales required by policy makers. The concurrent use of atmospheric composition measurements for both scientific and operational purposes is a new paradigm for the atmospheric chemistry community. The examples presented illustrate both the promise and challenge of merging satellite information with in situ observations in state-of-the-art data assimilation models.

Full access
Kenneth J. Davis, Edward V. Browell, Sha Feng, Thomas Lauvaux, Michael D. Obland, Sandip Pal, Bianca C. Baier, David F. Baker, Ian T. Baker, Zachary R. Barkley, Kevin W. Bowman, Yu Yan Cui, A. Scott Denning, Joshua P. DiGangi, Jeremy T. Dobler, Alan Fried, Tobias Gerken, Klaus Keller, Bing Lin, Amin R. Nehrir, Caroline P. Normile, Christopher W. O’Dell, Lesley E. Ott, Anke Roiger, Andrew E. Schuh, Colm Sweeney, Yaxing Wei, Brad Weir, Ming Xue, and Christopher A. Williams

Abstract

The Atmospheric Carbon and Transport (ACT) – America NASA Earth Venture Suborbital Mission set out to improve regional atmospheric greenhouse gas (GHG) inversions by exploring the intersection of the strong GHG fluxes and vigorous atmospheric transport that occurs within the midlatitudes. Two research aircraft instrumented with remote and in situ sensors to measure GHG mole fractions, associated trace gases, and atmospheric state variables collected 1140.7 flight hours of research data, distributed across 305 individual aircraft sorties, coordinated within 121 research flight days, and spanning five, six-week seasonal flight campaigns in the central and eastern United States. Flights sampled 31 synoptic sequences, including fair weather and frontal conditions, at altitudes ranging from the atmospheric boundary layer to the upper free troposphere. The observations were complemented with global and regional GHG flux and transport model ensembles. We found that midlatitude weather systems contain large spatial gradients in GHG mole fractions, in patterns that were consistent as a function of season and altitude. We attribute these patterns to a combination of regional terrestrial fluxes and inflow from the continental boundaries. These observations, when segregated according to altitude and air mass, provide a variety of quantitative insights into the realism of regional CO2 and CH4 fluxes and atmospheric GHG transport realizations. The ACT-America data set and ensemble modeling methods provide benchmarks for the development of atmospheric inversion systems. As global and regional atmospheric inversions incorporate ACT-America’s findings and methods, we anticipate these systems will produce increasingly accurate and precise sub-continental GHG flux estimates.

Full access
Kenneth J. Davis, Edward V. Browell, Sha Feng, Thomas Lauvaux, Michael D. Obland, Sandip Pal, Bianca C. Baier, David F. Baker, Ian T. Baker, Zachary R. Barkley, Kevin W. Bowman, Yu Yan Cui, A. Scott Denning, Joshua P. DiGangi, Jeremy T. Dobler, Alan Fried, Tobias Gerken, Klaus Keller, Bing Lin, Amin R. Nehrir, Caroline P. Normile, Christopher W. O’Dell, Lesley E. Ott, Anke Roiger, Andrew E. Schuh, Colm Sweeney, Yaxing Wei, Brad Weir, Ming Xue, and Christopher A. Williams

Abstract

The Atmospheric Carbon and Transport (ACT)-America NASA Earth Venture Suborbital Mission set out to improve regional atmospheric greenhouse gas (GHG) inversions by exploring the intersection of the strong GHG fluxes and vigorous atmospheric transport that occurs within the midlatitudes. Two research aircraft instrumented with remote and in situ sensors to measure GHG mole fractions, associated trace gases, and atmospheric state variables collected 1,140.7 flight hours of research data, distributed across 305 individual aircraft sorties, coordinated within 121 research flight days, and spanning five 6-week seasonal flight campaigns in the central and eastern United States. Flights sampled 31 synoptic sequences, including fair-weather and frontal conditions, at altitudes ranging from the atmospheric boundary layer to the upper free troposphere. The observations were complemented with global and regional GHG flux and transport model ensembles. We found that midlatitude weather systems contain large spatial gradients in GHG mole fractions, in patterns that were consistent as a function of season and altitude. We attribute these patterns to a combination of regional terrestrial fluxes and inflow from the continental boundaries. These observations, when segregated according to altitude and air mass, provide a variety of quantitative insights into the realism of regional CO2 and CH4 fluxes and atmospheric GHG transport realizations. The ACT-America dataset and ensemble modeling methods provide benchmarks for the development of atmospheric inversion systems. As global and regional atmospheric inversions incorporate ACT-America’s findings and methods, we anticipate these systems will produce increasingly accurate and precise subcontinental GHG flux estimates.

Full access