Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: Kim I. Martini x
- Refine by Access: All Content x
Abstract
The evolution of the near-inertial internal wavefield from ice-free summertime conditions to ice-covered wintertime conditions is examined using data from a yearlong deployment of six moorings on the Beaufort continental slope from August 2008 to August 2009. When ice is absent, from July to October, energy is efficiently transferred from the atmosphere to the ocean, generating near-inertial internal waves. When ice is present, from November to June, storms also cause near-inertial oscillations in the ice and mixed layer, but kinetic energy is weaker and oscillations are quickly damped. Damping is dependent on ice pack strength and morphology. Decay scales are longer in early winter (November–January) when the new ice pack is weaker and more mobile, decreasing in late winter (February–June) when the ice pack is stronger and more rigid. Efficiency is also reduced, as comparisons of atmospheric energy available for internal wave generation to mixed layer kinetic energies indicate that a smaller percentage of atmospheric energy is transferred to near-inertial motions when ice concentrations are >90%. However, large kinetic energies and shears are observed during an event on 16 December and spectral energy is elevated above Garrett–Munk levels, coinciding with the largest energy flux predicted during the deployment. A significant amount of near-inertial energy is episodically transferred to the internal wave band from the atmosphere even when the ocean is ice covered; however, damping by ice and less efficient energy transfer still leads to low Arctic internal wave energy in the near-inertial band. Increased kinetic energy below 300 m when ice is forming suggests some events may generate internal waves that radiate into the Arctic Ocean interior.
Abstract
The evolution of the near-inertial internal wavefield from ice-free summertime conditions to ice-covered wintertime conditions is examined using data from a yearlong deployment of six moorings on the Beaufort continental slope from August 2008 to August 2009. When ice is absent, from July to October, energy is efficiently transferred from the atmosphere to the ocean, generating near-inertial internal waves. When ice is present, from November to June, storms also cause near-inertial oscillations in the ice and mixed layer, but kinetic energy is weaker and oscillations are quickly damped. Damping is dependent on ice pack strength and morphology. Decay scales are longer in early winter (November–January) when the new ice pack is weaker and more mobile, decreasing in late winter (February–June) when the ice pack is stronger and more rigid. Efficiency is also reduced, as comparisons of atmospheric energy available for internal wave generation to mixed layer kinetic energies indicate that a smaller percentage of atmospheric energy is transferred to near-inertial motions when ice concentrations are >90%. However, large kinetic energies and shears are observed during an event on 16 December and spectral energy is elevated above Garrett–Munk levels, coinciding with the largest energy flux predicted during the deployment. A significant amount of near-inertial energy is episodically transferred to the internal wave band from the atmosphere even when the ocean is ice covered; however, damping by ice and less efficient energy transfer still leads to low Arctic internal wave energy in the near-inertial band. Increased kinetic energy below 300 m when ice is forming suggests some events may generate internal waves that radiate into the Arctic Ocean interior.
Abstract
Sea-Bird Scientific SBE 41CP CTDs are used on autonomous floats in the global Argo ocean observing program to measure the temperature and salinity of the upper ocean. While profiling, the sensors are subject to dynamic errors as they profile through vertical gradients. Applying dynamic corrections to the temperature and conductivity data reduces these errors and improves sensor accuracy. A series of laboratory experiments conducted in a stratified tank are used to characterize dynamic errors and determine corrections. The corrections are adapted for Argo floats, and recommendations for future implementation are presented.
Abstract
Sea-Bird Scientific SBE 41CP CTDs are used on autonomous floats in the global Argo ocean observing program to measure the temperature and salinity of the upper ocean. While profiling, the sensors are subject to dynamic errors as they profile through vertical gradients. Applying dynamic corrections to the temperature and conductivity data reduces these errors and improves sensor accuracy. A series of laboratory experiments conducted in a stratified tank are used to characterize dynamic errors and determine corrections. The corrections are adapted for Argo floats, and recommendations for future implementation are presented.
Abstract
The linear transfer of tidal energy from large to small scales is quantified for small tidal excursion over a near-critical continental slope. A theoretical framework for low-wavenumber energy transfer is derived from “flat bottom” vertical modes and evaluated with observations from the Oregon continental slope. To better understand the observations, local tidal dynamics are modeled with a superposition of two idealized numerical simulations, one forced by local surface-tide velocities and the other by an obliquely incident internal tide generated at the Mendocino Escarpment 315 km southwest of the study site. The simulations reproduce many aspects of the observed internal tide and verify the modal-energy balances. Observed transfer of tidal energy into high-mode internal tides is quantitatively consistent with observed turbulent kinetic energy (TKE) dissipation. Locally generated and incident simulated internal tides are superposed with varying phase shifts to mimic the effects of the temporally varying mesoscale. Altering the phase of the incident internal tide alters (i) internal-tide energy flux, (ii) internal-tide generation, and (iii) energy conversion to high modes, suggesting that tidally driven TKE dissipation may vary between 0 and 500 watts per meter of coastline on 3–5-day time scales. Comparison of observed in situ internal-tide generation and satellite-derived estimates of surface-tide energy loss is inconclusive.
Abstract
The linear transfer of tidal energy from large to small scales is quantified for small tidal excursion over a near-critical continental slope. A theoretical framework for low-wavenumber energy transfer is derived from “flat bottom” vertical modes and evaluated with observations from the Oregon continental slope. To better understand the observations, local tidal dynamics are modeled with a superposition of two idealized numerical simulations, one forced by local surface-tide velocities and the other by an obliquely incident internal tide generated at the Mendocino Escarpment 315 km southwest of the study site. The simulations reproduce many aspects of the observed internal tide and verify the modal-energy balances. Observed transfer of tidal energy into high-mode internal tides is quantitatively consistent with observed turbulent kinetic energy (TKE) dissipation. Locally generated and incident simulated internal tides are superposed with varying phase shifts to mimic the effects of the temporally varying mesoscale. Altering the phase of the incident internal tide alters (i) internal-tide energy flux, (ii) internal-tide generation, and (iii) energy conversion to high modes, suggesting that tidally driven TKE dissipation may vary between 0 and 500 watts per meter of coastline on 3–5-day time scales. Comparison of observed in situ internal-tide generation and satellite-derived estimates of surface-tide energy loss is inconclusive.
Abstract
A complex superposition of locally forced and shoaling remotely generated semidiurnal internal tides occurs on the Oregon continental slope. Presented here are observations from a zonal line of five profiling moorings deployed across the continental slope from 500 to 3000 m, a 24-h expendable current profiler (XCP) survey, and five 15–48-h lowered ADCP (LADCP)/CTD stations. The 40-day moored deployment spans three spring and two neap tides, during which the proportions of the locally and remotely forced internal tides vary. Baroclinic signals are strong throughout spring and neap tides, with 4–5-day-long bursts of strong cross-slope baroclinic semidiurnal velocity
Abstract
A complex superposition of locally forced and shoaling remotely generated semidiurnal internal tides occurs on the Oregon continental slope. Presented here are observations from a zonal line of five profiling moorings deployed across the continental slope from 500 to 3000 m, a 24-h expendable current profiler (XCP) survey, and five 15–48-h lowered ADCP (LADCP)/CTD stations. The 40-day moored deployment spans three spring and two neap tides, during which the proportions of the locally and remotely forced internal tides vary. Baroclinic signals are strong throughout spring and neap tides, with 4–5-day-long bursts of strong cross-slope baroclinic semidiurnal velocity
Abstract
Observations of breaking internal tides on the Oregon continental slope during a 40-day deployment of 5 moorings along 43°12′N are presented. Remotely generated internal tides shoal onto the slope, steepen, break, and form turbulent bores that propagate upslope independently of the internal tide. A high-resolution snapshot of a single bore is captured from lowered acoustic Doppler current profilers (LADCP)/CTD profiles in a 25-h time series at 1200 m. The bore is cold, salty, over 100 m tall, and has a turbulent head where instantaneous dissipation rates are enhanced (ε > 10−6 W kg−1) and sediment is resuspended. At the two deepest slope moorings (1452 and 1780 m), similar borelike phenomena are observed in near-bottom high-resolution temperature time series. Mean dissipation rates and diapycnal diffusivities increase by a factor of 2 when bores are present (
Abstract
Observations of breaking internal tides on the Oregon continental slope during a 40-day deployment of 5 moorings along 43°12′N are presented. Remotely generated internal tides shoal onto the slope, steepen, break, and form turbulent bores that propagate upslope independently of the internal tide. A high-resolution snapshot of a single bore is captured from lowered acoustic Doppler current profilers (LADCP)/CTD profiles in a 25-h time series at 1200 m. The bore is cold, salty, over 100 m tall, and has a turbulent head where instantaneous dissipation rates are enhanced (ε > 10−6 W kg−1) and sediment is resuspended. At the two deepest slope moorings (1452 and 1780 m), similar borelike phenomena are observed in near-bottom high-resolution temperature time series. Mean dissipation rates and diapycnal diffusivities increase by a factor of 2 when bores are present (