Search Results

You are looking at 1 - 10 of 30 items for

  • Author or Editor: Kristopher B. Karnauskas x
  • Refine by Access: All Content x
Clear All Modify Search
Kristopher B. Karnauskas

Abstract

The wind–evaporation–SST (WES) feedback describes a coupled mechanism by which an anomalous meridional sea surface temperature (SST) gradient in the tropics evolves over time. As commonly posed, the (positive) WES feedback depends critically on the atmospheric response to SST anomalies being governed by a process akin to that argued by Lindzen and Nigam in 1987, and omits an alternative process by which SST anomalies modulate surface wind speed through vertical momentum mixing as proposed by Wallace et al. and Hayes et al. in 1989. A simple model is developed that captures the essential coupled dynamics of the WES feedback as commonly posed, while also allowing for momentum entrainment in response to evolving SST anomalies. The evolution of the coupled system depends strongly on which effects are enabled in the model. When both effects are accounted for in idealized cases near the equator, the initial anomalous meridional SST gradient grows over a time scale of a few months but is damped within one year. The sign and magnitude of the WES feedback depend on latitude within the tropics and exhibit hemispheric asymmetry. When constrained by realistic profiles of prevailing zonal wind, the model predicts that the WES feedback near the equator is stronger during boreal winter, while the domain over which it is positive is broader during boreal summer, and that low-frequency climate variability can also modulate the strength and structure of the WES feedback. These insights may aid in the interpretation of coupled climate behavior in observations and more complex models.

Significance Statement

Regional climate variability on time scales from months to decades, including El Niño, relies heavily on feedbacks between the atmosphere and the ocean in which some initial change in the environment is either amplified or damped over time. Several conceptual models for such feedbacks have been devised over the years to explain the coupled climate behavior seen in observations and computer simulations. A rather ubiquitous one is called the wind–evaporation–SST (WES) feedback, but the typical phrasing of it does not incorporate a potentially important influence of ocean temperature changes on the stability of the atmosphere above it. This study adds that effect to the WES feedback framework and examines climate variability through the lens of the augmented conceptual model.

Full access
Lei Zhang
and
Kristopher B. Karnauskas

Abstract

The effects of externally forced tropical sea surface temperature (SST) anomalies on long-term Walker circulation changes are investigated through numerical atmospheric general circulation model (AGCM) experiments. In response to the observed tropics-wide SST trend, which exhibits a prominent interbasin warming contrast (IBWC) with smaller warming in the Pacific than the Indian and Atlantic Oceans that includes a weak La Niña–like pattern in the equatorial Pacific, pronounced low-level easterly anomalies emerge over the equatorial Pacific. Through sensitivity experiments, the intensification of the Pacific trade winds (PTWs) is attributable to the IBWC, whereas the slightly enhanced zonal SST gradient within the equatorial Pacific plays a small role relative to the observed IBWC. It is further demonstrated that the greater Indian Ocean warming forces low-level easterly anomalies over the entire equatorial Pacific, while the greater tropical Atlantic warming-driven enhancement of PTWs is located over the central equatorial Pacific. In contrast to observations, a negligible IBWC emerges in the tropical SST trends of CMIP5 historical simulations due to a strong El Niño–like warming in the tropical Pacific. Lacking the observed IBWC (and the observed enhancement of the zonal SST gradient within the equatorial Pacific), the PTWs in the CMIP5 ensemble can only weaken.

Full access
Kristopher B. Karnauskas
and
Antonio J. Busalacchi

Abstract

Satellite- and gauge-based precipitation and sea surface temperature (SST) are analyzed to understand the role of SST in the east Pacific warm pool (EPWP) in the interannual variability of Central American rainfall. It is shown that, during the rainy season following the mature phase of an El Niño event, an anomalously warm EPWP can cause a rapid enhancement of the eastern Pacific intertropical convergence zone (EP ITCZ), which directly leads to a positive rainfall anomaly over Central America. Moreover, the timing and amplitude of the SST-enhanced EP ITCZ depends on the persistence of the El Niño event. The longer the equatorial SST anomaly persists, the longer the EPWP is subject to anomalous shortwave heating, and thus the stronger (and later) the subsequent SST enhancement of the EP ITCZ. The implications for regional climate monitoring and predictability are explored; potential predictability of seasonal rainfall is demonstrated 4 months in advance using an SST-based index designed to capture the essence of the above-mentioned mechanism.

Full access
Kristopher B. Karnauskas
and
Antonio J. Busalacchi

Abstract

In comparison with the western and equatorial Pacific Ocean, relatively little is known about the east Pacific warm pool (EPWP). Observations indicate that the interannual variability of sea surface temperature (SST) in the EPWP is highly correlated (0.95) with the El Niño–Southern Oscillation (ENSO). In this paper, an ocean general circulation model (OGCM) of the tropical Pacific Ocean and various atmospheric and oceanic observations are used to diagnose the physical processes governing the interannual variability of SST in the EPWP. Atmospheric forcings for the OGCM are derived purely from satellite observations between 1988 and 2004.

Shortwave heating is identified as playing a dominant role in the interannual SST tendency of the EPWP. The high correlation between SST in the EPWP and eastern equatorial Pacific is therefore explained not by ocean processes, but by an atmospheric link. ENSO-driven equatorial SST anomalies modify the distribution of the overlying atmospheric vertical motions and therefore cloud cover and ultimately shortwave heating. During an El Niño event, for example, the ITCZ is equatorward displaced from its normal position over the EPWP, resulting in anomalously large shortwave heating over the EPWP. Analysis of poleward ocean heat transport and coastal Kelvin waves confirms that oceanic processes are not sufficient to explain the interannual variability of the EPWP.

Full access
Elizabeth J. Drenkard
and
Kristopher B. Karnauskas

Abstract

Several recent studies utilizing global climate models predict that the Pacific Equatorial Undercurrent (EUC) will strengthen over the twenty-first century. Here, historical changes in the tropical Pacific are investigated using the Simple Ocean Data Assimilation (SODA) reanalysis toward understanding the dynamics and mechanisms that may dictate such a change. Although SODA does not assimilate velocity observations, the seasonal-to-interannual variability of the EUC estimated by SODA corresponds well with moored observations over a ~20-yr common period. Long-term trends in SODA indicate that the EUC core velocity has increased by 16% century−1 and as much as 47% century−1 at fixed locations since the mid-1800s. Diagnosis of the zonal momentum budget in the equatorial Pacific reveals two distinct seasonal mechanisms that explain the EUC strengthening. The first is characterized by strengthening of the western Pacific trade winds and hence oceanic zonal pressure gradient during boreal spring. The second entails weakening of eastern Pacific trade winds during boreal summer, which weakens the surface current and reduces EUC deceleration through vertical friction. EUC strengthening has important ecological implications as upwelling affects the thermal and biogeochemical environment. Furthermore, given the potential large-scale influence of EUC strength and depth on the heat budget in the eastern Pacific, the seasonal strengthening of the EUC may help reconcile paradoxical observations of Walker circulation slowdown and zonal SST gradient strengthening. Such a process would represent a new dynamical “thermostat” on CO2-forced warming of the tropical Pacific Ocean, emphasizing the importance of ocean dynamics and seasonality in understanding climate change projections.

Full access
William R. Leslie
and
Kristopher B. Karnauskas

Abstract

The NOAA Tropical Atmosphere Ocean (TAO) moored array has, for three decades, been a valuable resource for monitoring and forecasting El Niño–Southern Oscillation and understanding physical oceanographic as well as coupled processes in the tropical Pacific influencing global climate. Acoustic Doppler current profiler (ADCP) measurements by TAO moorings provide benchmarks for evaluating numerical simulations of subsurface circulation including the Equatorial Undercurrent (EUC). Meanwhile, the Sea Education Association (SEA) has been collecting data during repeat cruises to the central equatorial Pacific Ocean (160°–126°W) throughout the past decade that provide useful cross validation and quantitative insight into the potential for stationary observing platforms such as TAO to incur sampling biases related to the strength of the EUC. This paper describes some essential sampling characteristics of the SEA dataset, compares SEA and TAO velocity measurements in the vicinity of the EUC, shares new insight into EUC characteristics and behavior only observable in repeat cross-equatorial sections, and estimates the sampling bias incurred by equatorial TAO moorings in their estimates of the velocity and transport of the EUC. The SEA high-resolution ADCP dataset compares well with concurrent TAO measurements (RMSE = 0.05 m s−1; R 2 = 0.98), suggests that the EUC core meanders sinusoidally about the equator between ±0.4° latitude, and reveals a mean sampling bias of equatorial measurements (e.g., TAO) of the EUC’s zonal velocity of −0.14 ± 0.03 m s−1 as well as a ~10% underestimation of EUC volume transport. A bias-corrected monthly record and climatology of EUC strength at 140°W for 1990–2010 is presented.

Full access
Kristopher B. Karnauskas
,
Antonio J. Busalacchi
, and
Raghu Murtugudde

Abstract

The low-frequency variability of gap winds at the Isthmuses of Tehuantepec and Papagayo is investigated using a 17-yr wind stress dataset merging the remotely sensed observations of Special Sensor Microwave Imager (SSM/I) and Quick Scatterometer (QuikSCAT) satellite sensors. A decadal signal is identified in the Tehuantepec gap winds, which is shown to be related to the Atlantic tripole pattern (ATP). Using linear regression and spectral analysis, it is demonstrated that the low-frequency variability of the Tehuantepec gap winds is remotely forced by the ATP, and the Papagayo gap winds are primarily governed by El Niño–Southern Oscillation (ENSO) with the ATP being of secondary importance.

The Tehuantepec (Papagayo) time series of wind stress anomalies can be better reconstructed when the local cross-isthmus pressure difference and large-scale climate information such as the ATP (ENSO) are included, suggesting that there is important information in the large-scale flow that is not transmitted directly through the background sea level pressure gradient. The geostrophic modulation of the easterly trades in the western Caribbean also serve as a remote driver of the Papagayo gap winds, which is itself not fully independent from ENSO. Finally, it is suggested that precipitation variability in the Inter-Americas region is closely related to the same remote forcing as that of the Tehuantepec gap winds, being the ATP and associated large-scale atmospheric circulation.

Full access
Lei Zhang
,
Weiqing Han
,
Kristopher B. Karnauskas
,
Yuanlong Li
, and
Tomoki Tozuka

Abstract

The subtropical Indian Ocean dipole (SIOD) and Ningaloo Niño are the two dominant modes of interannual climate variability in the subtropical south Indian Ocean. Observations show that the SIOD has been weakening in the recent decades, while Ningaloo Niño has been strengthening. In this study, we investigate the causes for such changes by analyzing climate model experiments using the NCAR Community Earth System Model, version 1 (CESM1). Ensemble-mean results from CESM1 large-ensemble (CESM1-LE) show that the external forcing causes negligible changes in the amplitudes of the SIOD and Ningaloo Niño, suggesting a dominant role of internal climate variability. Meanwhile, results from CESM1 pacemaker experiments reveal that the observed changes in the two climate modes cannot be attributed to the effect of sea surface temperature anomalies (SSTA) in either the eastern tropical Pacific Ocean or tropical Indian Ocean. By further comparing different ensemble members from the CESM1-LE, we find that a warm pool dipole mode of decadal variability, with opposite SSTA in the southeast Indian Ocean and the western-central tropical Pacific Ocean plays an important role in driving the observed changes in the SIOD and Ningaloo Niño. These changes in the two climate modes have considerable impacts on precipitation and sea level variabilities in the south Indian Ocean region.

Full access
Indrani Ganguly
,
Alex O. Gonzalez
, and
Kristopher B. Karnauskas

Abstract

The intertropical convergence zone (ITCZ) is a zonally elongated band of near-surface convergence and precipitation near the equator. During boreal spring, the eastern Pacific ITCZ migrates latitudinally on daily to subseasonal time scales, and climate models exhibit the greatest ITCZ biases during this time of the year. In this work, we investigate the air–sea interactions associated with the variability in the eastern Pacific ITCZ’s latitudinal location for consecutive days when the ITCZ is only located north of the equator (nITCZ events) compared to when the ITCZ is on both sides of the equator or south of the equator (dsITCZ events) during February–April. The distribution of sea surface temperature (SST) anomalies and surface latent heat flux (SLHF) anomalies during the nITCZ and dsITCZ events follow the classic wind–evaporation–SST (WES) positive feedback mechanism. However, an alternative mechanism, embracing the effect of SST anomalies on vertical stratification and momentum mixing, gives rise to a negative WES feedback. Our results show that in the surface layer, there is a general progression of positive WES feedbacks happening in the weeks leading to the events followed by negative WES feedbacks occurring after the ITCZ events, with an alternate mechanism involving air–sea humidity differences limiting evaporation occurring in between. Additionally, the spatial structures of the components of the feedbacks are nearly mirror images for these opposite ITCZ events over the east Pacific during boreal spring. In closing, we find that understanding the air–sea interactions during daily to weekly varying ITCZ events (nITCZ and dsITCZ) helps to pinpoint how fundamental processes differ for ITCZs in different hemispheres.

Open access
Lei Zhang
,
Kristopher B. Karnauskas
,
Jeffrey P. Donnelly
, and
Kerry Emanuel

Abstract

A downscaling approach is applied to future projection simulations from four CMIP5 global climate models to investigate the response of the tropical cyclone (TC) climatology over the North Pacific basin to global warming. Under the influence of the anthropogenic rise in greenhouse gases, TC-track density, power dissipation, and TC genesis exhibit robust increasing trends over the North Pacific, especially over the central subtropical Pacific region. The increase in North Pacific TCs is primarily manifested as increases in the intense and relatively weak TCs. Examination of storm duration also reveals that TCs over the North Pacific have longer lifetimes under global warming.

Through a genesis potential index, the mechanistic contributions of various physical climate factors to the simulated change in TC genesis are explored. More frequent TC genesis under global warming is mostly attributable to the smaller vertical wind shear and greater potential intensity (primarily due to higher sea surface temperature). In contrast, the effect of the saturation deficit of the free troposphere tends to suppress TC genesis, and the change in large-scale vorticity plays a negligible role.

Full access