Search Results

You are looking at 1 - 10 of 36 items for

  • Author or Editor: Kuolin Hsu x
  • All content x
Clear All Modify Search
Sepideh Sarachi, Kuo-lin Hsu, and Soroosh Sorooshian

Abstract

Earth-observing satellites provide a method to measure precipitation from space with good spatial and temporal coverage, but these estimates have a high degree of uncertainty associated with them. Understanding and quantifying the uncertainty of the satellite estimates can be very beneficial when using these precipitation products in hydrological applications. In this study, the generalized normal distribution (GND) model is used to model the uncertainty of the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) precipitation product. The stage IV Multisensor Precipitation Estimator (radar-based product) was used as the reference measurement. The distribution parameters of the GND model are further extended across various rainfall rates and spatial and temporal resolutions. The GND model is calibrated for an area of 5° × 5° over the southeastern United States for both summer and winter seasons from 2004 to 2009. The GND model is used to represent the joint probability distribution of satellite (PERSIANN) and radar (stage IV) rainfall. The method is further investigated for the period of 2006–08 over the Illinois watershed south of Siloam Springs, Arkansas. Results show that, using the proposed method, the estimation of the precipitation is improved in terms of percent bias and root-mean-square error.

Full access
Kuo-lin Hsu, Tim Bellerby, and S. Sorooshian

Abstract

A new satellite-based rainfall monitoring algorithm that integrates the strengths of both low Earth-orbiting (LEO) and geostationary Earth-orbiting (GEO) satellite information has been developed. The Lagrangian Model (LMODEL) algorithm combines a 2D cloud-advection tracking system and a GEO data–driven cloud development and rainfall generation model with procedures to update model parameters and state variables in near–real time. The details of the LMODEL algorithm were presented in Part I. This paper describes a comparative validation against ground radar rainfall measurements of 1- and 3-h LMODEL accumulated rainfall outputs. LMODEL rainfall estimates consistently outperform accumulated 3-h microwave (MW)-only rainfall estimates, even before the more restricted spatial coverage provided by the latter is taken into account. In addition, the performance of LMODEL products remains effective and consistent between MW overpasses. Case studies demonstrate that the LMODEL provides the potential to synergize available satellite data to generate useful precipitation measurements at an hourly scale.

Full access
Tim Bellerby, Kuo-lin Hsu, and Soroosh Sorooshian

Abstract

The Lagrangian Model (LMODEL) is a new multisensor satellite rainfall monitoring methodology based on the use of a conceptual cloud-development model that is driven by geostationary satellite imagery and is locally updated using microwave-based rainfall measurements from low earth-orbiting platforms. This paper describes the cloud development model and updating procedures; the companion paper presents model validation results. The model uses single-band thermal infrared geostationary satellite imagery to characterize cloud motion, growth, and dispersal at high spatial resolution (∼4 km). These inputs drive a simple, linear, semi-Lagrangian, conceptual cloud mass balance model, incorporating separate representations of convective and stratiform processes. The model is locally updated against microwave satellite data using a two-stage process that scales precipitable water fluxes into the model and then updates model states using a Kalman filter. Model calibration and updating employ an empirical rainfall collocation methodology designed to compensate for the effects of measurement time difference, geolocation error, cloud parallax, and rainfall shear.

Full access
Nasrin Nasrollahi, Kuolin Hsu, and Soroosh Sorooshian

Abstract

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the NASA Earth Observing System (EOS) Aqua and Terra platform with 36 spectral bands provides valuable information about cloud microphysical characteristics and therefore precipitation retrievals. Additionally, CloudSat, selected as a NASA Earth Sciences Systems Pathfinder satellite mission, is equipped with a 94-GHz radar that can detect the occurrence of surface rainfall. The CloudSat radar flies in formation with Aqua with only an average of 60 s delay. The availability of surface rain presence based on CloudSat together with the multispectral capabilities of MODIS makes it possible to create a training dataset to distinguish false rain areas based on their radiances in satellite precipitation products [e.g., Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)]. The brightness temperatures of six MODIS water vapor and infrared channels are used in this study along with surface rain information from CloudSat to train an artificial neural network model for no-rain recognition. The results suggest a significant improvement in detecting nonprecipitating regions and reducing false identification of precipitation. Also, the results of the case studies of precipitation events during the summer and winter of 2007 over the United States show an accuracy of 77% no-rain identification and 93% detection accuracy, respectively.

Restricted access
Phu Nguyen, Andrea Thorstensen, Soroosh Sorooshian, Kuolin Hsu, and Amir AghaKouchak

Abstract

Floods are among the most devastating natural hazards in society. Flood forecasting is crucially important in order to provide warnings in time to protect people and properties from such disasters. This research applied the high-resolution coupled hydrologic–hydraulic model from the University of California, Irvine, named HiResFlood-UCI, to simulate the historical 2008 Iowa flood. HiResFlood-UCI was forced with the near-real-time Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Cloud Classification System (PERSIANN-CCS) and NEXRAD Stage 2 precipitation data. The model was run using the a priori hydrologic parameters and hydraulic Manning n values from lookup tables. The model results were evaluated in two aspects: point comparison using USGS streamflow and areal validation of inundation maps using USDA’s flood extent maps derived from Advanced Wide Field Sensor (AWiFS) 56-m resolution imagery. The results show that the PERSIANN-CCS simulation tends to capture the observed hydrograph shape better than Stage 2 (minimum correlation of 0.86 for PERSIANN-CCS and 0.72 for Stage 2); however, at most of the stream gauges, Stage 2 simulation provides more accurate estimates of flood peaks compared to PERSIANN-CCS (49%–90% bias reduction from PERSIANN-CCS to Stage 2). The simulation in both cases shows a good agreement (0.67 and 0.73 critical success index for Stage 2 and PERSIANN-CCS simulations, respectively) with the AWiFS flood extent. Since the PERSIANN-CCS simulation slightly underestimated the discharge, the probability of detection (0.93) is slightly lower than that of the Stage 2 simulation (0.97). As a trade-off, the false alarm rate for the PERSIANN-CCS simulation (0.23) is better than that of the Stage 2 simulation (0.31).

Full access
Mohammed Ombadi, Phu Nguyen, Soroosh Sorooshian, and Kuo-lin Hsu

Abstract

The Nile River basin is one of the global hotspots vulnerable to climate change impacts because of a fast-growing population and geopolitical tensions. Previous studies demonstrated that general circulation models (GCMs) frequently show disagreement in the sign of change in annual precipitation projections. Here, we first evaluate the performance of 20 GCMs from phase six of the Coupled Model Intercomparison Project (CMIP6) benchmarked against a high-spatial-resolution precipitation dataset dating back to 1983 from Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR). Next, a Bayesian model averaging (BMA) approach is adopted to derive probability distributions of precipitation projections in the Nile basin. Retrospective analysis reveals that most GCMs exhibit considerable (up to 64% of mean annual precipitation) and spatially heterogenous bias in simulating annual precipitation. Moreover, it is shown that all GCMs underestimate interannual variability; thus, the ensemble range is underdispersive and is a poor indicator of uncertainty. The projected changes from the BMA model show that the value and sign of change vary considerably across the Nile basin. Specifically, it is found that projected changes in the two headwaters basins, namely, the Blue Nile and Upper White Nile, are 0.03% and −1.65%, respectively; both are statistically insignificant at α = 0.05. The uncertainty range estimated from the BMA model shows that the probability of a precipitation decrease is much higher in the Upper White Nile basin whereas projected change in the Blue Nile is highly uncertain both in magnitude and sign of change.

Restricted access
Yumeng Tao, Xiaogang Gao, Alexander Ihler, Soroosh Sorooshian, and Kuolin Hsu

Abstract

In the development of a satellite-based precipitation product, two important aspects are sufficient precipitation information in the satellite-input data and proper methodologies, which are used to extract such information and connect it to precipitation estimates. In this study, the effectiveness of the state-of-the-art deep learning (DL) approaches to extract useful features from bispectral satellite information, infrared (IR), and water vapor (WV) channels, and to produce rain/no-rain (R/NR) detection is explored. To verify the methodologies, two models are designed and evaluated: the first model, referred to as the DL-IR only method, applies deep learning approaches to the IR data only; the second model, referred to as the DL-IR+WV method, incorporates WV data to further improve the precipitation identification performance. The radar stage IV data are the reference data used as ground observation. The operational product, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Cloud Classification System (PERSIANN-CCS), serves as a baseline model with which to compare the performances. The experiments show significant improvement for both models in R/NR detection. The overall performance gains in the critical success index (CSI) are 21.60% and 43.66% over the verification periods for the DL-IR only model and the DL-IR+WV model compared to PERSIANN-CCS, respectively. In particular, the performance gains in CSI are as high as 46.51% and 94.57% for the models for the winter season. Moreover, specific case studies show that the deep learning techniques and the WV channel information effectively help recover a large number of missing precipitation pixels under warm clouds while reducing false alarms under cold clouds.

Full access
Yang Hong, Kuo-Lin Hsu, Soroosh Sorooshian, and Xiaogang Gao

Abstract

A satellite-based rainfall estimation algorithm, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Cloud Classification System (CCS), is described. This algorithm extracts local and regional cloud features from infrared (10.7 μm) geostationary satellite imagery in estimating finescale (0.04° × 0.04° every 30 min) rainfall distribution. This algorithm processes satellite cloud images into pixel rain rates by 1) separating cloud images into distinctive cloud patches; 2) extracting cloud features, including coldness, geometry, and texture; 3) clustering cloud patches into well-organized subgroups; and 4) calibrating cloud-top temperature and rainfall (T bR) relationships for the classified cloud groups using gauge-corrected radar hourly rainfall data. Several cloud-patch categories with unique cloud-patch features and T bR curves were identified and explained. Radar and gauge rainfall measurements were both used to evaluate the PERSIANN CCS rainfall estimates at a range of temporal (hourly and daily) and spatial (0.04°, 0.12°, and 0.25°) scales. Hourly evaluation shows that the correlation coefficient (CC) is 0.45 (0.59) at a 0.04° (0.25°) grid scale. The averaged CC of daily rainfall is 0.57 (0.63) for the winter (summer) season.

Full access
Yumeng Tao, Kuolin Hsu, Alexander Ihler, Xiaogang Gao, and Soroosh Sorooshian

Abstract

Compared to ground precipitation measurements, satellite-based precipitation estimation products have the advantage of global coverage and high spatiotemporal resolutions. However, the accuracy of satellite-based precipitation products is still insufficient to serve many weather, climate, and hydrologic applications at high resolutions. In this paper, the authors develop a state-of-the-art deep learning framework for precipitation estimation using bispectral satellite information, infrared (IR), and water vapor (WV) channels. Specifically, a two-stage framework for precipitation estimation from bispectral information is designed, consisting of an initial rain/no-rain (R/NR) binary classification, followed by a second stage estimating the nonzero precipitation amount. In the first stage, the model aims to eliminate the large fraction of NR pixels and to delineate precipitation regions precisely. In the second stage, the model aims to estimate the pointwise precipitation amount accurately while preserving its heavily skewed distribution. Stacked denoising autoencoders (SDAEs), a commonly used deep learning method, are applied in both stages. Performance is evaluated along a number of common performance measures, including both R/NR and real-valued precipitation accuracy, and compared with an operational product, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Cloud Classification System (PERSIANN-CCS). For R/NR binary classification, the proposed two-stage model outperforms PERSIANN-CCS by 32.56% in the critical success index (CSI). For real-valued precipitation estimation, the two-stage model is 23.40% lower in average bias, is 44.52% lower in average mean squared error, and has a 27.21% higher correlation coefficient. Hence, the two-stage deep learning framework has the potential to serve as a more accurate and more reliable satellite-based precipitation estimation product. The authors also provide some future directions for development of satellite-based precipitation estimation products in both incorporating auxiliary information and improving retrieval algorithms.

Full access
Yumeng Tao, Xiaogang Gao, Kuolin Hsu, Soroosh Sorooshian, and Alexander Ihler

Abstract

Despite the advantage of global coverage at high spatiotemporal resolutions, satellite remotely sensed precipitation estimates still suffer from insufficient accuracy that needs to be improved for weather, climate, and hydrologic applications. This paper presents a framework of a deep neural network (DNN) that improves the accuracy of satellite precipitation products, focusing on reducing the bias and false alarms. The state-of-the-art deep learning techniques developed in the area of machine learning specialize in extracting structural information from a massive amount of image data, which fits nicely into the task of retrieving precipitation data from satellite cloud images. Stacked denoising autoencoder (SDAE), a widely used DNN, is applied to perform bias correction of satellite precipitation products. A case study is conducted on the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) with spatial resolution of 0.08° × 0.08° over the central United States, where SDAE is used to process satellite cloud imagery to extract information over a window of 15 × 15 pixels. In the study, the summer of 2012 (June–August) and the winter of 2012/13 (December–February) serve as the training periods, while the same seasons of the following year (summer of 2013 and winter of 2013/14) are used for validation purposes. To demonstrate the effectiveness of the methodology outside the study area, three more regions are selected for additional validation. Significant improvements are achieved in both rain/no-rain (R/NR) detection and precipitation rate quantification: the results make 33% and 43% corrections on false alarm pixels and 98% and 78% bias reductions in precipitation rates over the validation periods of the summer and winter seasons, respectively.

Full access