Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Kyle C. Wiens x
  • Refine by Access: All Content x
Clear All Modify Search
Sarah A. Tessendorf, Kyle C. Wiens, and Steven A. Rutledge

Abstract

This study addresses the kinematic, microphysical, and electrical evolution of an isolated convective storm observed on 3 June 2000 during the Severe Thunderstorm Electrification and Precipitation Study field campaign. Doppler-derived vertical velocities, radar reflectivity, hydrometeor classifications from polarimetric radar, and Lightning Mapping Array (LMA) charge structures are examined over a nearly 3-h period. This storm, characterized as a low-precipitation supercell, produced modest amounts of hail, determined by fuzzy-logic hydrometeor classification as mostly small (<2 cm) hail, with one surface report of large (≥2 cm) hail. Doppler-derived updraft speeds peaked between 20 and 25 m s−1, and reflectivity was never greater than 60 dBZ. The most striking feature of this storm was its total lack of cloud-to-ground (CG) lightning. Though this storm was electrically active, with maximum flash rates near 30 per minute, no CG flashes of either polarity were detected. The charge structure inferred from the LMA observations was consistent with an inverted dipole, defined as having a midlevel positive charge region below upper-level negative charge. Inverted charge structures have typically been considered conducive to producing positive CG lightning; however, the 3 June storm appeared to lack the lower negative charge layer below the inverted dipole that is thought to provide the downward electrical bias necessary for positive CG lightning.

Full access
Sarah A. Tessendorf, Steven A. Rutledge, and Kyle C. Wiens

Abstract

This study discusses radar and lightning observations of two multicellular storms observed during the Severe Thunderstorm Electrification and Precipitation Study. The Lightning Mapping Array data indicated that the charge structure of the 19 June 2000 storm was consistent with a normal polarity tripole, while the 22 June 2000 storm exhibited an overall inverted tripolar charge structure. The 19 June storm consisted of weaker convection and produced little to no hail and moderate total flash rates peaking between 80 and 120 min−1. The cells in the 22 June 2000 storm were much more vigorous, exhibited strong, broad updrafts, and produced large quantities of hail, as well as extraordinary total flash rates as high as 500 min−1. The National Lightning Detection Network (NLDN) indicated that the 19 June storm produced mostly negative cloud-to-ground (CG) lightning, while the 22 June storm produced predominantly positive CG lightning, peaking at 10 min−1 just after two cells merged. However, the Los Alamos Sferic Array indicated that many of the positive CG strokes reported by the NLDN in the 22 June storm were intracloud discharges known as narrow bipolar events. Negative CG lightning was also observed in the 22 June storm, but typically came to ground beneath an inverted dipole in the storm anvil.

Full access
Kyle C. Wiens, Steven A. Rutledge, and Sarah A. Tessendorf

Abstract

This second part of a two-part study examines the lightning and charge structure evolution of the 29 June 2000 tornadic supercell observed during the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Data from the National Lightning Detection Network and the New Mexico Tech Lightning Mapping Array (LMA) are used to quantify the total and cloud-to-ground (CG) flash rates. Additionally, the LMA data are used to infer gross charge structure and to determine the origin locations and charge regions involved in the CG flashes. The total flash rate reached nearly 300 min−1 and was well correlated with radar-inferred updraft and graupel echo volumes. Intracloud flashes accounted for 95%–100% of the total lightning activity during any given minute. Nearly 90% of the CG flashes delivered a positive charge to ground (+CGs). The charge structure during the first 20 min of this storm consisted of a midlevel negative charge overlying lower positive charge with no evidence of an upper positive charge. The charge structure in the later (severe) phase was more complex but maintained what could be roughly described as an inverted tripole, dominated by a deep midlevel (5–9 km MSL) region of positive charge. The storm produced only two CG flashes (both positive) in the first 2 h of lightning activity, both of which occurred during a brief surge in updraft and hail production. Frequent +CG flashes began nearly coincident with dramatic increases in storm updraft, hail production, total flash rate, and the formation of an F1 tornado. The +CG flashes tended to cluster in or just downwind of the heaviest precipitation, which usually contained hail. The +CG flashes all originated between 5 and 9 km MSL, centered at 6.8 km (−10°C), and tapped LMA-inferred positive charge both in the precipitation core and (more often) in weaker reflectivity extending downwind. All but one of the −CG flashes originated from >9 km MSL and tended to strike near the precipitation core.

Full access
Sarah A. Tessendorf, L. Jay Miller, Kyle C. Wiens, and Steven A. Rutledge

Abstract

This is a two-part study that addresses the kinematic, microphysical, and electrical aspects of a severe storm that occurred in western Kansas on 29 June 2000 observed during the Severe Thunderstorm Electrification and Precipitation Study (STEPS) field campaign. In this first part, polarimetric and Doppler radar data are used along with a simple particle growth model to examine the evolution of the kinematic and microphysical properties of the storm from its earliest developing phase through its mature and dissipating phases. During its severe stage, the storm exhibited frequent positive cloud-to-ground lightning strikes, very large (∼5 cm) hail, and a tornado.

Doppler-derived winds, radar reflectivity, and hydrometeor classifications from the polarimetric data over a nearly 4-h period are presented. It is shown that updraft velocity and vertical vorticity had to reach magnitudes of at least 10 m s−1 and 10−2 s−1 and occupy major portions of the storm before it could produce most of the observed severe storm characteristics. Furthermore, the establishment of cyclonic horizontal flow around the right flank of the updraft core was essential for hail production. Most of the largest hail grew from near millimeter-sized particles that originated in the mid- to upper-level stagnation region that resulted from obstacle-like flow of environmental air around the divergent outflow from the upper part of the updraft. These recycling embryonic particles descended around the right flank of the updraft core and reentered the updraft, intermingling with other smaller particles that had grown from cloud base along the main low-level updraft stream.

Full access
Walter A. Lyons, Steven A. Cummer, Mark. A. Stanley, Gary R. Huffines, Kyle C. Wiens, and Thomas E. Nelson

Over a decade of monitoring mesospheric transient luminous events (TLEs) above U.S. high plains storms confirmed sprites are almost exclusively associated with positive polarity cloud-to-ground lightning (+CGs). Following C. T. R. Wilson's theory proposed in 1925, only those +CGs lowering large amounts of charge to ground should induce sprites. The key metric, the charge moment change, generally must exceed ~600 C km to initiate the electric breakdown at 75 km, which evolves into the sprite. High plains storms generate the highest percentage, the largest average peak current, and highest density of +CGs in the nation. Various storm types generate +CGs, and especially supercells are often dominated by positive strokes. Few sprites observations above supercells have been obtained (and usually during their decaying phase), while thousands of sprites have been imaged above mesoscale convective system (MCS) stratiform regions and some squall lines. During the 2000 Severe Thunderstorm Electrification and Precipitation Study (STEPS), two supercells were examined. One storm contained >90% +CGs, but none exceeded the sprite charge moment change threshold. A second nocturnal supercell did produce sprites from the last two +CGs of the storm as a stratiform region developed, more favorable for significant continuing currents to follow the +CG return stroke. Unexpectedly, three sprites occurring during the most intense phase of the storm were triggered by unusually intense and impulsive +CGs, which lowered sufficient charge in the return stroke alone for sprite initiation. Such +CGs, and thus sprites, are probably relatively rare events during the supercell mature stage.

Full access