Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Kyle Chudler x
  • Refine by Access: All Content x
Clear All Modify Search
Kyle Chudler
and
Steven A. Rutledge

Abstract

The Propagation of Intraseasonal Oscillations (PISTON) field campaign took place in the waters of the western tropical North Pacific during the late summer and early fall of 2018 and 2019. During both research cruises, the Colorado State University SEA-POL polarimetric C-band weather radar obtained continuous 3D measurements of oceanic precipitation systems. This study provides an overview of the variability in convection observed during the PISTON cruises, and relates this variability to large-scale atmospheric conditions. Using an objective classification algorithm, precipitation features are identified and labeled by their size (isolated, sub-MCS, MCS) and degree of convective organization (nonlinear, linear). It is shown that although large mesoscale convective systems (MCSs) occurred infrequently (present in 13% of radar scans), they contributed a disproportionately large portion (56%) of the total rain volume. Conversely, small isolated features were present in 91% of scans, yet these features contributed just 11% of the total rain volume, with the bulk of the rainfall owing to warm rain production. Convective rain rates and 30-dBZ echo-top heights increased with feature size and degree of organization. MCSs occurred more frequently in periods of low-level southwesterly winds, and when low-level wind shear was enhanced. By compositing radar and sounding data by phases of easterly waves (of which there were several in 2018), troughs are shown to be associated with increased precipitation and a higher relative frequency of MCS feature occurrence, while ridges are shown to be associated with decreased precipitation and a higher relative frequency of isolated convective features.

Full access
Kyle Chudler
,
Weixin Xu
, and
Steven A. Rutledge

Abstract

During the boreal summer, satellite-based precipitation estimates indicate a distinct maximum in rainfall off the west coast of the island of Luzon in the Philippines. Also occurring during the summer months is the boreal summer intraseasonal oscillation (BSISO), a main driver of intraseasonal variability in the region. This study investigates the diurnal variability of convective intensity, morphology, and precipitation coverage offshore and over the island of Luzon. The results are then composited by BSISO activity. Results of this study indicate that offshore precipitation is markedly increased during active BSISO phases, when strong low-level southwesterly monsoon winds bring increased moisture and enhanced convergence upwind of the island’s high terrain. A key finding of this work is the existence of an afternoon maximum in convection over Luzon even during active BSISO phases, when solar heating and instability are apparently reduced due to enhanced cloud cover. This result is important, as previous studies have shown in other areas of the tropics afternoon convection over landmasses is a key component to offshore precipitation. Although offshore precipitation is maximized in the evening hours during active phases, results indicate that precipitation frequently occurs over the ocean around the clock (both as organized systems and isolated, shallow showers), possibly owing to an increase in sensible and latent heat fluxes, vertical wind shear, and convergence of the monsoon flow with land features.

Free access
Weixin Xu
,
Steven A. Rutledge
, and
Kyle Chudler

Abstract

Using 17-yr spaceborne precipitation radar measurements, this study investigates how diurnal cycles of rainfall and convective characteristics over the South China Sea region are modulated by the boreal summer intraseasonal oscillation (BSISO). Generally, diurnal cycles change significantly between suppressed and active BSISO periods. Over the Philippines and Indochina, where the low-level monsoon flows impinge on coast lines, diurnal cycles of rainfall and many convective properties are enhanced during suppressed periods. During active periods, diurnal variation of convection is still significant over land but diminishes over water. Also, afternoon peaks of rainfall and MCS populations over land are obviously extended in active periods, mainly through the enhancement of stratiform precipitation. Over Borneo, where the prevailing low-level winds are parallel to coasts, diurnal cycles (both onshore and offshore) are actually stronger during active periods. Radar profiles also demonstrate a pronounced nocturnal offshore propagation of deep convection over western Borneo in active periods. During suppressed periods, coastal afternoon convection over Borneo is reduced, and peak convection occurs over the mountains until the convective suppression is overcome in the late afternoon or evening. A major portion (>70%) of the total precipitation over the Philippines and Indochina during suppressed periods falls from afternoon isolated to medium-sized systems (<10 000 km2), but more than 70% of the active BSISO rainfall is contributed by nocturnal (after 1800 LT) broad precipitation systems (>10 000 km2). However, offshore total precipitation is dominated by large precipitation systems (>10 000 km2) regardless of BSISO phases and regions.

Full access
Kyle Chudler
,
Steven A. Rutledge
, and
Brenda Dolan

Abstract

Isolated warm-rain cells are an important feature over the tropical oceans. Although warm rain is typically associated with relatively small raindrops, large raindrops (>4.5 mm in diameter) have been observed in some cases. Previous studies have examined warm rain cells with large drops on a case-study basis, but they have yet to be investigated in a broader, statistical sense. During the recent Propagation of Intraseasonal Oscillations (PISTON) field campaign, a C-band polarimetric radar routinely measured extreme values of differential reflectivity in small, isolated convection, indicating the presence of large drops. Using an objective feature identification and tracking algorithm, this study offers new insights to the structure and frequency of cells containing large drops. Cells with high differential reflectivity (>3.5 dB) were present in 24% of all radar scans. The cells were typically small (8-km2 mean area), short lived (usually <10 min), and shallow (3.7-km mean height). High differential reflectivity was more often found on the upwind side of the cells, suggesting a size sorting mechanism was operating establishing a low concentration of large drops on the upwind side. Differential reflectivity also tended to increase at lower altitudes, which is hypothesized to be due to continued drop growth and increasing temperature (increasing the dielectric constant of water). Rapid vertical cross-section radar scans, as well as transects made by a Learjet aircraft with onboard particle probes, are also used to analyze these cells, and support the conclusions drawn from statistical analysis.

Restricted access
Yolande L. Serra
,
Steven A. Rutledge
,
Kyle Chudler
, and
Chidong Zhang

Abstract

This study evaluates rainfall, cloudiness, and related fields in the European Centre for Medium-Range Weather Forecast 5th generation climate reanalysis (ERA5) and the National Aeronautics and Space Administration’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) gridded global reanalysis products against observations from the Office of Naval Research’s Propagation of Intra-Seasonal Tropical OscillatioNs (PISTON) field campaign. We focus on the first PISTON cruise, which took place from August-October 2018 in the Northern Equatorial Western Pacific. We find biases in the mean surface heat and radiative fluxes consistent with observed biases in high and low cloud fraction and convective activity in the reanalyses. Biases in the high, middle and low cloud fraction are also consistent with the biases in the thermodynamic profiles, with positive biases in upper-level humidity associated with excessive high cloud in both products, while negative biases in humidity above the boundary layer associated with too few low and middle clouds and increased static stability. ERA5 exhibits a more top-heavy profile than MERRA-2 during periods dominated by MCSs and stronger upward motion during rainy periods, consistent with higher total rainfall in this product during PISTON. The courser grid size in MERRA-2 compared to ERA5 and the fact that MERRA-2 did not assimilate PISTON data likely both contribute to the overall larger biases seen in MERRA-2. The observed biases in the reanalyses during PISTON have also been seen in comparisons of these products with satellite data, suggesting the results of this study are more broadly applicable.

Restricted access