Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Kyle S. Griffin x
  • All content x
Clear All Modify Search
Kyle S. Griffin and Jonathan E. Martin

Abstract

Time-extended EOF (TE-EOF) analysis is employed to examine the synoptic-scale evolution of the two leading modes of the North Pacific jet stream variability, namely, its zonal extension–retraction (TE-EOF 1) and the north–south shift of its exit region (TE-EOF 2). Use of the TE-EOF analysis enables a temporally coherent examination of the synoptic-scale evolution preceding and following peaks in each of the two leading modes that provides insight into the preferred evolutions of the North Pacific jet.

Composite analyses are constructed based upon selecting peaks in the principal component time series of both phases of each TE-EOF whose magnitude exceeded 1.5 standard deviations. Jet extension events are associated with an anomalous cyclonic circulation over the Gulf of Alaska that induces a low-level warm anomaly over western North America. Jet retractions are associated with a nearly opposite configuration characterized by an anomalous anticyclonic circulation over the Aleutians and anomalous low-level cold anomaly over western North America. Similar but lower-amplitude upper-level patterns are noted in the composites of the corresponding poleward-/equatorward-shifted jet phases, with the poleward shift of the jet exit region tied to anomalously low geopotential heights over Alaska and anomalous low-level warmth over north-central North America. An equatorward shift of the exit region is tied to positive height anomalies over Alaska with downstream cold anomalies occurring in western North America. The more extreme downstream impacts that characterize TE-EOF 2 are also longer lasting (>5 days), suggesting potential utility in medium-range forecasts.

Full access
Kyle S. Griffin and Lance F. Bosart

Abstract

Documentation of southwest Indian Ocean (SWIO) tropical cyclones (TCs) and extratropical transition (ET) events is sparse in the refereed literature. The authors present a climatology of SWIO TC and ET events for 1989–2013. The SWIO averages ~9 tropical cyclones (TCs) per year in this modern era. Of these TCs, ~44% undergo extratropical transition (ET), or ~four per year. A case study of TC Edisoana (1990), the most rapidly intensifying SWIO post-ET TC between 1989 and 2013, shows that extratropical interactions began when an approaching trough embedded in the subtropical jet stream (STJ) induced ET on 7 March. As Edisoana underwent ET, a subtropical ridge downstream amplified in response to poleward-directed positive potential vorticity (PV) advection associated with diabatically (convectively) driven upper-level outflow from TC Edisoana. This amplifying lower-latitude ridge phased with a lower-amplitude higher-latitude ridge embedded in the polar front jet (PFJ), resulting in the merger of the two jets. This ridge phasing and jet merger, combined with the approach of an upstream trough embedded in the PFJ, resulted in a decrease in the half-wavelength between the approaching trough and the downstream phased ridges and provided extratropical cyclone Edisoana with a prime environment for rapid reintensification (RI). Poleward-directed positive PV advection into the phased ridge strengthened the upper-level jet downstream of Edisoana, which provided the primary baroclinic forcing throughout the RI phase. A backward trajectory analysis suggests that strong diabatic heating enhanced favorable synoptic-scale forcing for ascent from the upstream and downstream jet streaks and played a crucial role in the deepening of Edisoana through the ET and RI periods.

Full access
Sarah A. Monette, Christopher S. Velden, Kyle S. Griffin, and Christopher M. Rozoff

Abstract

A geostationary satellite–derived cloud product that is based on a tropical-overshooting-top (TOT) detection algorithm is described for applications over tropical oceans. TOTs are identified using a modified version of a midlatitude overshooting-top detection algorithm developed for severe-weather applications. The algorithm is applied to identify TOT activity associated with Atlantic Ocean tropical cyclones (TCs). The detected TOTs can serve as a proxy for “hot towers,” which represent intense convection with possible links to TC rapid intensification (RI). The purpose of this study is to describe the adaptation of the midlatitude overshooting-top detection algorithm to the tropics and to provide an initial exploration of possible correlations between TOT trends in developing TCs and subsequent RI. This is followed by a cursory examination of the TOT parameter’s potential as a predictor of RI both on its own and in multiparameter RI forecast schemes. RI forecast skill potential is investigated by examining empirical thresholds of TOT activity and trends within prescribed radii of a large sample of developing North Atlantic TC centers. An independent test on Atlantic TCs in 2006–07 reveals that an empirically based TOT scheme has potential as a predictor for RI occurring in the subsequent 24 h, especially for RI maximum wind thresholds of 25 and 30 kt (24 h)−1 (1 kt ≈ 0.5 m s−1). As expected, the stand-alone TOT-based RI scheme is comparatively less accurate than existing objective multiparameter RI prediction methods. A preliminary experiment that adds TOT-based predictors to an objective logistic regression-based scheme is shown to improve slightly the forecast skill of RI, however.

Full access
Clark Evans, Heather M. Archambault, Jason M. Cordeira, Cody Fritz, Thomas J. Galarneau Jr., Saska Gjorgjievska, Kyle S. Griffin, Alexandria Johnson, William A. Komaromi, Sarah Monette, Paytsar Muradyan, Brian Murphy, Michael Riemer, John Sears, Daniel Stern, Brian Tang, and Segayle Thompson

The Pre-Depression Investigation of Cloud-systems in the Tropics (PREDICT) field experiment successfully gathered data from four developing and four decaying/nondeveloping tropical disturbances over the tropical North Atlantic basin between 15 August and 30 September 2010. The invaluable roles played by early career scientists (ECSs) throughout the campaign helped make possible the successful execution of the field program's mission to investigate tropical cyclone formation. ECSs provided critical meteorological information— often obtained from novel ECS-created products—during daily weather briefings that were used by the principal investigators in making mission planning decisions. Once a Gulfstream V (G-V) flight mission was underway, ECSs provided nowcasting support, relaying information that helped the mission scientists to steer clear of potential areas of turbulence aloft. Data from these missions, including dropsonde and GPS water vapor profiler data, were continually obtained, processed, and quality-controlled by ECSs. The dropsonde data provided National Hurricane Center forecasters and PREDICT mission scientists with real-time information regarding the characteristics of tropical disturbances. These data and others will serve as the basis for multiple ECS-led research topics over the years to come and are expected to provide new insights into the tropical cyclone formation process. PREDICT also provided invaluable educational and professional development experiences for ECSs, including the opportunity to critically evaluate observational evidence for tropical cyclone development theories and networking opportunities with their peers and established scientists in the field.

Full access
Clark Evans, Kimberly M. Wood, Sim D. Aberson, Heather M. Archambault, Shawn M. Milrad, Lance F. Bosart, Kristen L. Corbosiero, Christopher A. Davis, João R. Dias Pinto, James Doyle, Chris Fogarty, Thomas J. Galarneau Jr., Christian M. Grams, Kyle S. Griffin, John Gyakum, Robert E. Hart, Naoko Kitabatake, Hilke S. Lentink, Ron McTaggart-Cowan, William Perrie, Julian F. D. Quinting, Carolyn A. Reynolds, Michael Riemer, Elizabeth A. Ritchie, Yujuan Sun, and Fuqing Zhang

Abstract

Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from the meso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as North Atlantic Hurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review in 2003. Methods for diagnosing ET in reanalysis, observational, and model-forecast datasets are discussed. New climatologies for the eastern North Pacific and southwest Indian Oceans are presented alongside updates to western North Pacific and North Atlantic Ocean climatologies. Advances in understanding and, in some cases, modeling the direct impacts of ET-related wind, waves, and precipitation are noted. Improved understanding of structural evolution throughout the transformation stage of ET fostered in large part by novel aircraft observations collected in several recent ET events is highlighted. Predictive skill for operational and numerical model ET-related forecasts is discussed along with environmental factors influencing posttransition cyclone structure and evolution. Operational ET forecast and analysis practices and challenges are detailed. In particular, some challenges of effective hazard communication for the evolving threats posed by a tropical cyclone during and after transition are introduced. This review concludes with recommendations for future work to further improve understanding, forecasts, and hazard communication.

Open access