Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Kyle Swanson x
  • Refine by Access: All Content x
Clear All Modify Search
Kyle Swanson

Abstract

An intriguing manifestation of the underlying nonlinear fluid dynamic character of the atmosphere is found in an idealized quasigeostrophic model of the troposphere. For identical forcing and dissipation, the model’s climate is found to depend sensitively upon the choice of initial conditions, tending either toward a state resembling the current Northern Hemisphere wintertime circulation, characterized by significant mobile synoptic-scale transient disturbance activity, or a circulation still possessing vigorous synoptic transient behavior but more characterized by lower-frequency transient activity. Both of these dynamical states are strongly turbulent, with well-developed inertial ranges in their energy cascades, and transient kinetic energy on the same order as the kinetic energy of the time mean flow. This suggests the existence of multiple underlying turbulent strange attractors for the system. The climates of these states differ substantially, with the turbulent attractor with reduced synoptic transients having a zonal mean meridional temperature gradient substantially larger than the other climate attractor. This result suggests that turbulent behavior is not equivalent to uniqueness in atmospheric-like dynamical systems.

Full access
Kyle L. Swanson

Abstract

The nature of extratropical tropospheric low-frequency variability remains an important, unresolved problem in the overall dynamics of the climate system. Primarily, this is due to the complexity of dynamics operating on low-frequency timescales of 10–100 days; both synoptic- and planetary-scale dynamical processes are fully active and strongly interactive. This review explores two issues that frequently arise in the study of low-frequency variability, and emphasizes the continuing value of idealized dynamical models in interpreting low-frequency variability. The first issue concerns the extent to which the extratropical atmosphere supports planetary-scale instabilities, and whether a simple picture of such instabilities can be developed. It is argued that under certain circumstances such instabilities do exist, and result from the accumulation of stationary wave energy in local resonant cavities that emerge in zonally varying barotropic flow. The second issue concerns the interaction of synoptic transients with the zonally varying planetary-scale flow. Simple dynamical settings reveal the essence, but also the ambiguity underlying the interaction between these two scales. The implications of these simple model arguments for the current understanding of low-frequency variability in more complicated models as well as nature is discussed, along with the role of such simple models in the overall climate modeling hierarchy.

Full access
Mu Mu
,
Theodore G. Shepherd
, and
Kyle Swanson

Abstract

A nonlinear symmetric stability theorem is derived in the context of the f-plane Boussinesq equations, recovering an earlier result of Xu within a more general framework. The theorem applies to symmetric disturbances to a baroclinic basic flow, the disturbances having arbitrary structure and magnitude. The criteria for nonlinear stability are virtually identical to those for linear stability. As in Xu, the nonlinear stability theorem can be used to obtain rigorous upper bounds on the saturation amplitude of symmetric instabilities. In a simple example, the bounds are found to compare favorably with heuristic parcel-based estimates in both the hydrostatic and non-hydrostatic limits.

Full access
Iordanka N. Panayotova
and
Kyle L. Swanson

Abstract

Meridional asymmetry arising from the inclusion of meridional variation in the Coriolis parameter is shown to be a fundamental property of the higher-order dynamics of Eady edge waves. This asymmetry may be relevant to structural characteristics of observed atmospheric transients, particularly short waves propagating along the extratropical dynamic tropopause.

Full access
Kyle L. Swanson
and
Raymond T. Pierrehumbert

Abstract

The relative effects of dynamics and surface thermal interactions in determining the heat flux and temperature fluctuations within the lower-tropospheric portion of the Pacific storm track are quantified using the probability distribution functions (PDFs) of the temperature fluctuations and heat flux, Lagrangian passive tracer calculations, and a simple stochastic model. It is found that temperature fluctuations damp to the underlying oceanic temperature with a timescale of approximately 1 day but that dynamics still play the predominant role in determining atmospheric heat flux, due to eddy mixing lengths within the storm track of ≤ 5° latitude. These results are confirmed by the favorable comparison of the PDFs of the model-generated and observed temperature fluctuations and heat flux.

The implications of strong thermal damping in the lower troposphere are discussed and speculations are made regarding the effect of such damping upon baroclinic eddy life cycles and the general circulation.

Full access
Kyle L. Swanson
and
Paul J. Roebber

Abstract

All meteorological analyzed fields contain errors, the magnitude of which ultimately determines the point at which a given forecast will fail. Here, the authors explore the extent to which analysis difference fields capture certain aspects of the actual but unknowable flow-dependent analysis error. The analysis difference fields considered here are obtained by subtracting the NCEP and ECMWF reanalysis 500-hPa height fields. It is shown that the magnitude of this 500-hPa analysis difference averaged over the North Pacific Ocean has a statistically significant impact on forecast skill over the continental United States well into the medium range (5 days). Further, it is shown that the impact of this analysis difference on forecast skill is similar to that of ensemble spread well into the medium range, a measure of forecast uncertainty currently used in the operational setting. Finally, the analysis difference and ensemble spread are shown to be independent; hence, the impact of these two quantities upon forecast skill is additive.

Full access
Edmund K. M. Chang
,
Sukyoung Lee
, and
Kyle L. Swanson

Abstract

This paper reviews the current state of observational, theoretical, and modeling knowledge of the midlatitude storm tracks of the Northern Hemisphere cool season.

Observed storm track structures and variations form the first part of the review. The climatological storm track structure is described, and the seasonal, interannual, and interdecadal storm track variations are discussed. In particular, the observation that the Pacific storm track exhibits a marked minimum during midwinter when the background baroclinicity is strongest, and a new finding that storm tracks exhibit notable variations in their intensity on decadal timescales, are highlighted as challenges that any comprehensive storm track theory or model has to be able to address.

Physical processes important to storm track dynamics make up the second part of the review. The roles played by baroclinic processes, linear instability, downstream development, barotropic modulation, and diabatic heating are discussed. Understanding of these processes forms the core of our current theoretical knowledge of storm track dynamics, and provides a context within which both observational and modeling results can be interpreted. The eddy energy budget is presented to show that all of these processes are important in the maintenance of the storm tracks.

The final part of the review deals with the ability to model storm tracks. The success as well as remaining problems in idealized storm track modeling, which is based on a linearized dynamical system, are discussed. Perhaps on a more pragmatic side, it is pointed out that while the current generation of atmospheric general circulation models faithfully reproduce the climatological storm track structure, and to a certain extent, the seasonal and ENSO-related interannual variations of storm tracks, in-depth comparisons between observed and modeled storm track variations are still lacking.

Full access
Paul J. Roebber
,
Kyle L. Swanson
, and
Jugal K. Ghorai

Abstract

This research examines whether an adequate representation of flow features on the synoptic scale allows for the skillful inference of mesoscale precipitating systems. The focus is on the specific problem of landfalling systems on the west coast of the United States for a variety of synoptic types that lead to significant rainfall. The methodology emphasizes rigorous hypothesis testing within a controlled hindcast setting to quantify the significance of the results. The role of lateral boundary conditions is explicitly accounted for by the study.

The hypotheses that (a) uncertainty in the large-scale analysis and (b) upstream buffer size have no impact on the skill of precipitation simulations are each rejected at a high level of confidence, with the results showing that mean precipitation skill is higher where low analysis uncertainty exists and for small nested grids. This indicates that an important connection exists between the quality of the synoptic information and predictability at the mesoscale in this environment, despite the absence of such information in the initialization or boundary conditions. Further, the flow-through of synoptic information strongly constrains the evolution of the mesoscale such that a small upstream buffer produces superior results consistent with the higher quality of the information crossing the boundary. Some preliminary evidence that synoptic type has an influence on precipitation skill is also found. The implications of these results for data assimilation, forecasting, and climate modeling are discussed.

Full access
Kyle L. Swanson
,
Paul J. Kushner
, and
Isaac M. Held

Abstract

Longitudinal variations in the upper-tropospheric time-mean flow strongly modulate the structure and amplitude of upper-tropospheric eddies. This barotropic modulation is studied using simple models of wave propagation through zonally varying basic states that consist of contours separating regions of uniform barotropic potential vorticity. Such basic states represent in a simple manner the potential vorticity distribution in the upper troposphere. Predictions of the effect of basic-state zonal variations on the amplitude and spatial structure of eddies and their associated particle displacements are made using conservation of wave action or, equivalently, the linearized “pseudoenergy” wave activity. The predictions are confirmed using WKB theory and linear numerical calculations. The interaction of finite-amplitude disturbances with the basic flow is also analyzed numerically using nonlinear contour-dynamical simulations. It is found that breaking nonlinear contour waves undergo irreversible amplitude attenuation, scale lengthening, and frequency lowering upon passing through a region of weak basic-state flow.

Full access
Anastasios A. Tsonis
,
Kyle L. Swanson
, and
Geli Wang

Abstract

In a recent application of networks to 500-hPa data, it was found that supernodes in the network correspond to major teleconnection. More specifically, in the Northern Hemisphere a set of supernodes coincides with the North Atlantic Oscillation (NAO) and another set is located in the area where the Pacific–North American (PNA) and the tropical Northern Hemisphere (TNH) patterns are found. It was subsequently suggested that the presence of atmospheric teleconnections make climate more stable and more efficient in transferring information. Here this hypothesis is tested by examining the topology of the complete network as well as of the networks without teleconnections. It is found that indeed without teleconnections the network becomes less stable and less efficient in transferring information. It was also found that the pattern chiefly responsible for this mechanism in the extratropics is the NAO. The other patterns are simply a linear response of the activity in the tropics and their role in this mechanism is inconsequential.

Full access