Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: L. Bengtsson x
  • All content x
Clear All Modify Search
L. Bengtsson

The result of five years of operational medium-range forecasts at ECMWF is discussed. It is shown that a considerable improvement in predictive skill has taken place, resulting in more accurate forecasts and an extension in time of useful predictive skill. For the Northern Hemisphere extratropics, the improvement in skill during the winter season is about three days for the 500-mb geopotential compared to the very first experiments in the early 1970s. There are large geographical and temporal variations in the performance of the model, as well as large-scale errors of a systematic nature. Numerical experiments have indicated great sensitivity to the representation of orography and to tropical forcing.

Full access
B. K. Reichert, L. Bengtsson, and J. Oerlemans

Abstract

Glacier fluctuations exclusively due to internal variations in the climate system are simulated using downscaled integrations of the ECHAM4/OPYC coupled general circulation model (GCM). A process-based modeling approach using a mass balance model of intermediate complexity and a dynamic ice flow model considering simple shearing flow and sliding are applied. Multimillennia records of glacier length fluctuations for Nigardsbreen (Norway) and Rhonegletscher (Switzerland) are simulated using autoregressive processes determined by statistically downscaled GCM experiments. Return periods and probabilities of specific glacier length changes using GCM integrations excluding external forcings such as solar irradiation changes, volcanic, or anthropogenic effects are analyzed and compared to historical glacier length records. Preindustrial fluctuations of the glaciers as far as observed or reconstructed, including their advance during the “Little Ice Age,” can be explained by internal variability in the climate system as represented by a GCM. However, fluctuations comparable to the present-day glacier retreat exceed any variation simulated by the GCM control experiments and must be caused by external forcing, with anthropogenic forcing being a likely candidate.

Full access
L. Bengtsson and J. Shukla

The currently available model-based global data sets of atmospheric circulation are a by-product of the daily requirement of producing initial conditions for numerical weather prediction (NWP) models. These data sets have been quite useful for studying fundamental dynamical and physical processes, and for describing the nature of the general circulation of the atmosphere. However, due to limitations in the early data assimilation systems and inconsistencies caused by numerous model changes, the available model-based global data sets may not be suitable for studying global climate change.

A comprehensive analysis of global observations based on a four-dimensional data assimilation system with a realistic physical model should be undertaken to integrate space and in situ observations to produce internally consistent, homogeneous, multivariate data sets for the earth's climate system. The concept is equally applicable for producing data sets for the atmosphere, the oceans, and the biosphere, and such data sets will be quite useful for studying global climate change.

Full access
B. K. Reichert, L. Bengtsson, and J. Oerlemans

Abstract

A process-oriented modeling approach is applied in order to simulate glacier mass balance for individual glaciers using statistically downscaled general circulation models (GCMs). Glacier-specific seasonal sensitivity characteristics based on a mass balance model of intermediate complexity are used to simulate mass balances of Nigardsbreen (Norway) and Rhonegletscher (Switzerland). Simulations using reanalyses (ECMWF) for the period 1979–93 are in good agreement with in situ mass balance measurements for Nigardsbreen. The method is applied to multicentury integrations of coupled (ECHAM4/OPYC) and mixed-layer (ECHAM4/MLO) GCMs excluding external forcing. A high correlation between decadal variations in the North Atlantic oscillation (NAO) and mass balance of the glaciers is found. The dominant factor for this relationship is the strong impact of winter precipitation associated with the NAO. A high NAO phase means enhanced (reduced) winter precipitation for Nigardsbreen (Rhonegletscher), typically leading to a higher (lower) than normal annual mass balance. This mechanism, entirely due to internal variations in the climate system, can explain observed strong positive mass balances for Nigardsbreen and other maritime Norwegian glaciers within the period 1980–95. It can also partly be responsible for recent strong negative mass balances of Alpine glaciers.

Full access
L. Bengtsson, M. Kanamitsu, P. Kållberg, and S. Uppala

A presentation of the First GARP Global Experiment (FGGE) Research Programme at the European Centre for Medium Range Weather Forecasts (ECMWF) is given. An excellent data coverage in areas previously practically void of observations has made it possible to analyze synoptic features in the tropics and the Southern Hemisphere in great detail. The studies strongly suggest that the winter circulation in the Southern Hemisphere is more intense than previously assumed. The tropical circulation shows several examples of episodes of very active interhemispheric exchange. The large-scale circulation in the tropics is dominated by a giant ascending cell over the western Pacific having a particularly strong component in the equatorial plane. This circulation is especially pronounced during the Northern Hemisphere summer. Prediction experiments show increased skill, particularly in the Southern Hemisphere and the tropics. Comparison with operational forecasts performed at ECMWF after FGGE, as well as with observing system experiments, shows that this is due to the improved data coverage during FGGE.

Full access
K. I. Hodges, R. W. Lee, and L. Bengtsson

Abstract

Extratropical cyclones are identified and compared using data from four recent reanalyses for the winter periods in both hemispheres. Results show the largest differences occur between the older lower resolution 25-yr Japanese Reanalysis (JRA-25) when compared with the newer high resolution reanalyses, particularly in the Southern Hemisphere (SH). Spatial differences between the newest reanalyses are small in both hemispheres and generally not significant except in some common regions associated with cyclogenesis close to orography. Differences in the cyclone maximum intensitites are generally related to spatial resolution except in the NASA Modern Era Retrospective-Analysis for Research and Applications (NASA MERRA), which has larger intensities for several different measures. Matching storms between reanalyses shows the number matched between the ECMWF Interim Re-Analysis (ERA-Interim) and the other reanalyses is similar in the Northern Hemisphere (NH). In the SH the number matched between JRA-25 and ERA-Interim is lower than in the NH; however, for NASA MERRA and the NCEP Climate Forecast System Reanalysis (NCEP CFSR), the number matched is similar to the NH. The mean separation of the identically same cyclones is typically less than 2° geodesic in both hemispheres for the latest reanalyses, whereas JRA-25 compared with the other reanalyses has a broader distribution in the SH, indicating greater uncertainty. The instantaneous intensity differences for matched storms shows narrow distributions for pressure, while for winds and vorticity the distributions are much broader, indicating larger uncertainty typical of smaller-scale fields. Composite cyclone diagnostics show that cyclones are very similar between the reanalyses, with differences being related to the intensities, consistent with the intensity results. Overall, results show NH cyclones correspond well between reanalyses, with a significant improvement in the SH for the latest reanalyses, indicating a convergence between reanalyses for cyclone properties.

Full access
E. Roeckner, L. Bengtsson, J. Feichter, J. Lelieveld, and H. Rodhe

Abstract

The time-dependent climate response to changing concentrations of greenhouse gases and sulfate aerosols is studied using a coupled general circulation model of the atmosphere and the ocean (ECHAM4/OPYC3). The concentrations of the well-mixed greenhouse gases like CO2, CH4, N2O, and CFCs are prescribed for the past (1860–1990) and projected into the future according to International Panel on Climate Change (IPCC) scenario IS92a. In addition, the space–time distribution of tropospheric ozone is prescribed, and the tropospheric sulfur cycle is calculated within the coupled model using sulfur emissions of the past and projected into the future (IS92a). The radiative impact of the aerosols is considered via both the direct and the indirect (i.e., through cloud albedo) effect. It is shown that the simulated trend in sulfate deposition since the end of the last century is broadly consistent with ice core measurements, and the calculated radiative forcings from preindustrial to present time are within the uncertainty range estimated by IPCC. Three climate perturbation experiments are performed, applying different forcing mechanisms, and the results are compared with those obtained from a 300-yr unforced control experiment. As in previous experiments, the climate response is similar, but weaker, if aerosol effects are included in addition to greenhouse gases. One notable difference to previous experiments is that the strength of the Indian summer monsoon is not fundamentally affected by the inclusion of aerosol effects. Although the monsoon is damped compared to a greenhouse gas only experiment, it is still more vigorous than in the control experiment. This different behavior, compared to previous studies, is the result of the different land–sea distribution of aerosol forcing. Somewhat unexpected, the intensity of the global hydrological cycle becomes weaker in a warmer climate if both direct and indirect aerosol effects are included in addition to the greenhouse gases. This can be related to anomalous net radiative cooling of the earth’s surface through aerosols, which is balanced by reduced turbulent transfer of both sensible and latent heat from the surface to the atmosphere.

Full access
T. P. Barnett, K. Arpe, L. Bengtsson, M. Ji, and A. Kumar

Abstract

Ensembles of extended Atmospheric Model Intercomparison Project (AMIP) runs from the general circulation models of the National Centers for Environmental Prediction (formerly the National Meteorological Center) and the Max-Planck Institute (Hamburg, Germany) are used to estimate the potential predictability (PP) of an index of the Pacific–North America (PNA) mode of climate change. The PP of this pattern in “perfect” prediction experiments is 20%–25% of the index’s variance. The models, particularly that from MPI, capture virtually all of this variance in their hindcasts of the winter PNA for the period 1970–93.

The high levels of internally generated model noise in the PNA simulations reconfirm the need for an ensemble averaging approach to climate prediction. This means that the forecasts ought to be expressed in a probabilistic manner. It is shown that the models’ skills are higher by about 50% during strong SST events in the tropical Pacific, so the probabilistic forecasts need to be conditional on the tropical SST.

Taken together with earlier studies, the present results suggest that the original set of AMIP integrations (single 10-yr runs) is not adequate to reliably test the participating models’ simulations of interannual climate variability in the midlatitudes.

Full access
M. A. Giorgetta, E. Manzini, E. Roeckner, M. Esch, and L. Bengtsson

Abstract

The quasi-biennial oscillation (QBO) in the equatorial zonal wind is an outstanding phenomenon of the atmosphere. The QBO is driven by a broad spectrum of waves excited in the tropical troposphere and modulates transport and mixing of chemical compounds in the whole middle atmosphere. Therefore, the simulation of the QBO in general circulation models and chemistry climate models is an important issue. Here, aspects of the climatology and forcing of a spontaneously occurring QBO in a middle-atmosphere model are evaluated, and its influence on the climate and variability of the tropical middle atmosphere is investigated. Westerly and easterly phases are considered separately, and 40-yr ECMWF Re-Analysis (ERA-40) data are used as a reference where appropriate. It is found that the simulated QBO is realistic in many details. Resolved large-scale waves are particularly important for the westerly phase, while parameterized gravity wave drag is more important for the easterly phase. Advective zonal wind tendencies are important for asymmetries between westerly and easterly phases, as found for the suppression of the easterly phase downward propagation. The simulation of the QBO improves the tropical upwelling and the atmospheric tape recorder compared to a model without a QBO. The semiannual oscillation is simulated realistically only if the QBO is represented. In sensitivity tests, it is found that the simulated QBO is strongly sensitive to changes in the gravity wave sources. The sensitivity to the tested range of horizontal resolutions is small. The stratospheric vertical resolution must be better than 1 km to simulate a realistic QBO.

Full access
Jun-Ichi Yano, Michał Z. Ziemiański, Mike Cullen, Piet Termonia, Jeanette Onvlee, Lisa Bengtsson, Alberto Carrassi, Richard Davy, Anna Deluca, Suzanne L. Gray, Víctor Homar, Martin Köhler, Simon Krichak, Silas Michaelides, Vaughan T. J. Phillips, Pedro M. M. Soares, and Andrzej A. Wyszogrodzki

Abstract

After extensive efforts over the course of a decade, convective-scale weather forecasts with horizontal grid spacings of 1–5 km are now operational at national weather services around the world, accompanied by ensemble prediction systems (EPSs). However, though already operational, the capacity of forecasts for this scale is still to be fully exploited by overcoming the fundamental difficulty in prediction: the fully three-dimensional and turbulent nature of the atmosphere. The prediction of this scale is totally different from that of the synoptic scale (103 km), with slowly evolving semigeostrophic dynamics and relatively long predictability on the order of a few days.

Even theoretically, very little is understood about the convective scale compared to our extensive knowledge of the synoptic-scale weather regime as a partial differential equation system, as well as in terms of the fluid mechanics, predictability, uncertainties, and stochasticity. Furthermore, there is a requirement for a drastic modification of data assimilation methodologies, physics (e.g., microphysics), and parameterizations, as well as the numerics for use at the convective scale. We need to focus on more fundamental theoretical issues—the Liouville principle and Bayesian probability for probabilistic forecasts—and more fundamental turbulence research to provide robust numerics for the full variety of turbulent flows.

The present essay reviews those basic theoretical challenges as comprehensibly as possible. The breadth of the problems that we face is a challenge in itself: an attempt to reduce these into a single critical agenda should be avoided.

Open access