Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: L. D. Stratton x
  • Refine by Access: All Content x
Clear All Modify Search
L. J. Mangum, S. P. Hayes, and L. D. Stratton

Abstract

Moored wind measurements at near-equatorial locations along 110°W, 125°W, 140°W, 170°W, and 165°E are used to investigate the space-time variability of the tropical Pacific wind field. These measurements complement previous studies that relied on island winds in the central Pacific or a few moored measurements in the eastern Pacific. Results indicate that the energetic portion of the zonal and meridional wind is significantly coherent over meridional scales of about 200 km and zonal scales of 1500 km. Even at these separations the estimated coherence often accounts for less than 50% of the variance. Temporal subsampling indicated (in agreement with previous studies) that at least ten samples per month were required to resolve monthly wind speed to within 1 m s−1 in the eastern equatorial Pacific. West of the date line and in the intertropical convergence zone (ITCZ), nearly daily sampling was required. Investigation showed that little error in the daily average of derived quantities such as wind speed and stress was associated with computing these variables from daily vector averages of the wind components rather than from hourly values of the components that were subsequently averaged.

Full access
Catherine A. Senior, John H. Marsham, Ségolène Berthou, Laura E. Burgin, Sonja S. Folwell, Elizabeth J. Kendon, Cornelia M. Klein, Richard G. Jones, Neha Mittal, David P. Rowell, Lorenzo Tomassini, Théo Vischel, Bernd Becker, Cathryn E. Birch, Julia Crook, Andrew J. Dougill, Declan L. Finney, Richard J. Graham, Neil C. G. Hart, Christopher D. Jack, Lawrence S. Jackson, Rachel James, Bettina Koelle, Herbert Misiani, Brenda Mwalukanga, Douglas J. Parker, Rachel A. Stratton, Christopher M. Taylor, Simon O. Tucker, Caroline M. Wainwright, Richard Washington, and Martin R. Willet

Abstract

Pan-Africa convection-permitting regional climate model simulations have been performed to study the impact of high resolution and the explicit representation of atmospheric moist convection on the present and future climate of Africa. These unique simulations have allowed European and African climate scientists to understand the critical role that the representation of convection plays in the ability of a contemporary climate model to capture climate and climate change, including many impact-relevant aspects such as rainfall variability and extremes. There are significant improvements in not only the small-scale characteristics of rainfall such as its intensity and diurnal cycle, but also in the large-scale circulation. Similarly, effects of explicit convection affect not only projected changes in rainfall extremes, dry spells, and high winds, but also continental-scale circulation and regional rainfall accumulations. The physics underlying such differences are in many cases expected to be relevant to all models that use parameterized convection. In some cases physical understanding of small-scale change means that we can provide regional decision-makers with new scales of information across a range of sectors. We demonstrate the potential value of these simulations both as scientific tools to increase climate process understanding and, when used with other models, for direct user applications. We describe how these ground-breaking simulations have been achieved under the U.K. Government’s Future Climate for Africa Programme. We anticipate a growing number of such simulations, which we advocate should become a routine component of climate projection, and encourage international coordination of such computationally and human-resource expensive simulations as effectively as possible.

Full access