Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: L. E. Hipps x
  • Refine by Access: All Content x
Clear All Modify Search
W. E. Eichinger
,
H. E. Holder
,
R. Knight
,
J. Nichols
,
D. I. Cooper
,
L. E. Hipps
,
W. P. Kustas
, and
J. H. Prueger

Abstract

The Soil Moisture–Atmosphere Coupling Experiment (SMACEX) was conducted in the Walnut Creek watershed near Ames, Iowa, over the period from 15 June to 11 July 2002. A main focus of SMACEX is the investigation of the interactions between the atmospheric boundary layer, surface moisture, and canopy. A vertically staring elastic lidar was used to provide a high-time-resolution continuous record of the boundary layer height at the edge between a soybean and cornfield. The height and thickness of the entrainment zone are used to estimate the surface sensible heat flux using the Batchvarova–Gryning boundary layer model. Flux estimates made over 6 days are compared to conventional eddy correlation measurements. The calculated values of the sensible heat flux were found to be well correlated (R 2 = 0.79, with a slope of 0.95) when compared to eddy correlation measurements in the area. The standard error of the flux estimates was 21.4 W m−2 (31% rms difference between this method and surface measurements), which is somewhat higher than a predicted uncertainty of 16%. The major sources of error were from the estimates of the vertical potential temperature gradient and an assumption that the entrainment parameter A was equal to the ratio of the entrainment flux and the surface heat flux.

Full access
J. H. Prueger
,
J. L. Hatfield
,
T. B. Parkin
,
W. P. Kustas
,
L. E. Hipps
,
C. M. U. Neale
,
J. I. MacPherson
,
W. E. Eichinger
, and
D. I. Cooper

Abstract

A network of eddy covariance (EC) and micrometeorological flux (METFLUX) stations over corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] canopies was established as part of the Soil Moisture–Atmosphere Coupling Experiment (SMACEX) in central Iowa during the summer of 2002 to measure fluxes of heat, water vapor, and carbon dioxide (CO2) during the growing season. Additionally, EC measurements of water vapor and CO2 fluxes from an aircraft platform complemented the tower-based measurements. Sensible heat, water vapor, and CO2 fluxes showed the greatest spatial and temporal variability during the early crop growth stage. Differences in all of the energy balance components were detectable between corn and soybean as well as within similar crops throughout the study period. Tower network–averaged fluxes of sensible heat, water vapor, and CO2 were observed to be in good agreement with area-averaged aircraft flux measurements.

Full access
Joseph G. Alfieri
,
William P. Kustas
,
John H. Prueger
,
Lawrence E. Hipps
,
José L. Chávez
,
Andrew N. French
, and
Steven R. Evett

Abstract

Land–atmosphere interactions play a critical role in regulating numerous meteorological, hydrological, and environmental processes. Investigating these processes often requires multiple measurement sites representing a range of surface conditions. Before these measurements can be compared, however, it is imperative that the differences among the instrumentation systems are fully characterized. Using data collected as a part of the 2008 Bushland Evapotranspiration and Agricultural Remote Sensing Experiment (BEAREX08), measurements from nine collocated eddy covariance (EC) systems were compared with the twofold objective of 1) characterizing the interinstrument variation in the measurements, and 2) quantifying the measurement uncertainty associated with each system. Focusing on the three turbulent fluxes (heat, water vapor, and carbon dioxide), this study evaluated the measurement uncertainty using multiple techniques. The results of the analyses indicated that there could be substantial variability in the uncertainty estimates because of the advective conditions that characterized the study site during the afternoon and evening hours. However, when the analysis was limited to nonadvective, quasi-normal conditions, the response of the nine EC stations were remarkably similar. For the daytime period, both the method of Hollinger and Richardson and the method of Mann and Lenschow indicated that the uncertainty in the measurements of sensible heat, latent heat, and carbon dioxide flux were approximately 13 W m−2, 27 W m−2, and 0.10 mg m−2 s−1, respectively. Based on the results of this study, it is clear that advection can greatly increase the uncertainty associated with EC flux measurements. Since these conditions, as well as other phenomena that could impact the measurement uncertainty, are often intermittent, it may be beneficial to conduct uncertainty analyses on an ongoing basis.

Full access
Kshitij Parajuli
,
Scott B. Jones
,
David G. Tarboton
,
Lawrence E. Hipps
,
Lin Zhao
,
Morteza Sadeghi
,
Mark L. Rockhold
,
Alfonso Torres-Rua
, and
Gerald N. Flerchinger

Abstract

Considerable advancement in spatiotemporal resolution of remote sensing and ground-based measurements has enabled refinement of parameters used in land surface models for simulating surface water fluxes. However, land surface modeling capabilities are still inadequate for accurate representation of subsurface properties and processes, which continue to limit the accuracy of land surface model simulation. Our objective in this study was to examine the performance of the variously parameterized Noah land surface model with multiphysics option (Noah-MP) in simulating evapotranspiration (ET) and soil moisture dynamics in stony soils using verification from eddy covariance ET and in situ soil moisture data during the growing season of year 2015, obtained from the Lower Sheep subcatchment within the Reynolds Creek Experimental Watershed in southwestern Idaho. We evaluated the performance of Noah-MP considering four different scenarios with 1) a one-layer soil profile with Noah-MP default soil hydraulic parameters and three more five-layer soil profiles using 2) Noah-MP default soil hydraulic parameters; 3) soil hydraulic parameters derived from a pedotransfer function using field observations; and 4) hydraulic parameters from scenario 3, which also accounted for stone content in each layer. Each modeling experiment was forced with the same set of initial conditions, atmospheric input, and vegetation parameters. Our results indicate that enhanced representation of soil profile properties and stone content information noticeably improve the Noah-MP land surface model simulation of soil moisture content and evapotranspiration.

Free access
J. C. Doran
,
F. J. Barnes
,
R. L. Coulter
,
T. L. Crawford
,
D. D. Baldocchi
,
L. Balick
,
D. R. Cook
,
D. Cooper
,
R. J. Dobosy
,
W. A. Dugas
,
L. Fritschen
,
R. L. Hart
,
L. Hipps
,
J. M. Hubbe
,
W. Gao
,
R. Hicks
,
R. R. Kirkham
,
K. E. Kunkel
,
T. J. Martin
,
T. P. Meyers
,
W. Porch
,
J. D. Shannon
,
W. J. Shaw
,
E. Swiatek
, and
C. D. Whiteman

A field campaign was carried out near Boardman, Oregon, to study the effects of subgrid-scale variability of sensible- and latent-heat fluxes on surface boundary-layer properties. The experiment involved three U.S. Department of Energy laboratories, one National Oceanic and Atmospheric Administration laboratory, and several universities. The experiment was conducted in a region of severe contrasts in adjacent surface types that accentuated the response of the atmosphere to variable surface forcing. Large values of sensible-heat flux and low values of latent-heat flux characterized a sagebrush steppe area; significantly smaller sensible-heat fluxes and much larger latent-heat fluxes were associated with extensive tracts of irrigated farmland to the north, east, and west of the steppe. Data were obtained from an array of surface flux stations, remote-sensing devices, an instrumented aircraft, and soil and vegetation measurements. The data will be used to address the problem of extrapolating from a limited number of local measurements to area-averaged values of fluxes suitable for use in global climate models.

Full access
W. P. Kustas
,
D.C. Goodrich
,
M.S. Moran
,
S. A. Amer
,
L. B. Bach
,
J. H. Blanford
,
A. Chehbouni
,
H. Claassen
,
W. E. Clements
,
P. C. Doraiswamy
,
P. Dubois
,
T. R. Clarke
,
C. S. T. Daughtry
,
D. I. Gellman
,
T. A. Grant
,
L. E. Hipps
,
A. R. Huete
,
K. S. Humes
,
T. J. Jackson
,
T. O. Keefer
,
W. D. Nichols
,
R. Parry
,
E. M. Perry
,
R. T. Pinker
,
P. J. Pinter Jr.
,
J. Qi
,
A. C. Riggs
,
T. J. Schmugge
,
A. M. Shutko
,
D. I. Stannard
,
E. Swiatek
,
J. D. van Leeuwen
,
J. van Zyl
,
A. Vidal
,
J. Washburne
, and
M. A. Weltz

Arid and semiarid rangelands comprise a significant portion of the earth's land surface. Yet little is known about the effects of temporal and spatial changes in surface soil moisture on the hydrologic cycle, energy balance, and the feedbacks to the atmosphere via thermal forcing over such environments. Understanding this interrelationship is crucial for evaluating the role of the hydrologic cycle in surface–atmosphere interactions.

This study focuses on the utility of remote sensing to provide measurements of surface soil moisture, surface albedo, vegetation biomass, and temperature at different spatial and temporal scales. Remote-sensing measurements may provide the only practical means of estimating some of the more important factors controlling land surface processes over large areas. Consequently, the use of remotely sensed information in biophysical and geophysical models greatly enhances their ability to compute fluxes at catchment and regional scales on a routine basis. However, model calculations for different climates and ecosystems need verification. This requires that the remotely sensed data and model computations be evaluated with ground-truth data collected at the same areal scales.

The present study (MONSOON 90) attempts to address this issue for semiarid rangelands. The experimental plan included remotely sensed data in the visible, near-infrared, thermal, and microwave wavelengths from ground and aircraft platforms and, when available, from satellites. Collected concurrently were ground measurements of soil moisture and temperature, energy and water fluxes, and profile data in the atmospheric boundary layer in a hydrologically instrumented semiarid rangeland watershed. Field experiments were conducted in 1990 during the dry and wet or “monsoon season” for the southwestern United States. A detailed description of the field campaigns, including measurements and some preliminary results are given.

Full access
William P. Kustas
,
Martha C. Anderson
,
Joseph G. Alfieri
,
Kyle Knipper
,
Alfonso Torres-Rua
,
Christopher K. Parry
,
Hector Nieto
,
Nurit Agam
,
William A. White
,
Feng Gao
,
Lynn McKee
,
John H. Prueger
,
Lawrence E. Hipps
,
Sebastian Los
,
Maria Mar Alsina
,
Luis Sanchez
,
Brent Sams
,
Nick Dokoozlian
,
Mac McKee
,
Scott Jones
,
Yun Yang
,
Tiffany G. Wilson
,
Fangni Lei
,
Andrew McElrone
,
Josh L. Heitman
,
Adam M. Howard
,
Kirk Post
,
Forrest Melton
, and
Christopher Hain

Abstract

Particularly in light of California’s recent multiyear drought, there is a critical need for accurate and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability of high-value crops. Providing this information requires the development of tools applicable across the continuum from subfield scales to improve water management within individual fields up to watershed and regional scales to assess water resources at county and state levels. High-value perennial crops (vineyards and orchards) are major water users, and growers will need better tools to improve water-use efficiency to remain economically viable and sustainable during periods of prolonged drought. To develop these tools, government, university, and industry partners are evaluating a multiscale remote sensing–based modeling system for application over vineyards. During the 2013–17 growing seasons, the Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project has collected micrometeorological and biophysical data within adjacent pinot noir vineyards in the Central Valley of California. Additionally, each year ground, airborne, and satellite remote sensing data were collected during intensive observation periods (IOPs) representing different vine phenological stages. An overview of the measurements and some initial results regarding the impact of vine canopy architecture on modeling ET and plant stress are presented here. Refinements to the ET modeling system based on GRAPEX are being implemented initially at the field scale for validation and then will be integrated into the regional modeling toolkit for large area assessment.

Full access