Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: L. Garand x
  • Refine by Access: All Content x
Clear All Modify Search
S. K. Dutta, L. Garand, and S. Heilliette

Abstract

This study highlights recent progress at the Canadian Meteorological Centre in the assimilation of Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) radiance observations that are sensitive to land surfaces. The assimilation is carried out using the Canadian global ensemble–variational system. That system benefits from flow-dependent background-error statistics that include covariances between surface skin temperature and atmospheric variables. Up to 142 channels from both AIRS and IASI are assimilated. A detailed database of spectral surface emissivity is used. Forecasts are evaluated against ERA-Interim analyses, own-cycle analyses, and radiosonde observations. A conservative approach is taken, with restrictive conditions on topography and surface emissivity. From 2-month assimilation experiments, a significant positive impact is obtained in the Northern Hemisphere extratropics beyond day 2 from the surface to the upper troposphere. The impact is mixed in other regions, depending on level or forecast lead time. Causes for these mixed results are examined in view of future experiments and eventual operational implementation.

Full access
L. Garand, D. S. Turner, C. Chouinard, and J. Hallé

Abstract

A continuous assimilation of high-density global satellite observations is required in order to improve numerical weather prediction analyses used to start forecasts. Until now, it was assumed that efficiency requirements imposed the use of regression-based models of atmospheric transmittance (typically on fixed pressure layers with coefficients varying for each layer) and prohibited the use of physically based models. Here, it is demonstrated that an explicit calculation of infrared transmittances for each absorbing gas (H2O, CO2, O3, CH4, N2O, and O2) can be done efficiently, provided that a monochromatic approach is followed as in a regression model such as Radiative Transfer for TOVS (the TIROS Operational Vertical Sounder) (operational in most weather centers). The classical Goody random model is chosen as a physical formulation for spectral line absorption along with established water vapor and oxygen continua parameterizations. Line-by-line transmittance calculations for 189 atmospheric profiles are used as reference in the evaluation. By adjusting the individual gas optical depths by a constant multiplicative factor (typically near unity), it is shown that an accuracy better than 0.3 K in brightness temperature can be obtained for most satellite infrared sounding channels. Jacobians defining the adjoint of the model are readily obtained by analytical differentiation of the radiance with respect to level temperature and humidity.

The new model was introduced into the Canadian Meteorological Center 3D variational data assimilation system, and a comparison was carried out between the regression and physical models for a 2-week period for the first 12 sounding channels of the NOAA-12 satellite. The numerous advantages of the physical model over the regression model are emphasized. Biases introduced by the use of fixed or outdated mixing ratio estimates for CO2, O3, and CH4 are largely reduced using current and location dependent concentrations. Global statistics and maps of observed minus calculated radiances reveal the general superiority of the physical model. The proposed model is efficient and is well suited for the massive assimilation of satellite radiances and other remote sensing applications.

Full access
Louis Garand, Christopher Grassotti, Jacques Hallé, and Gerald L. Klein

Radiosonde humidity distributions over the United States, Canada, and Europe are discussed. Striking dry-end and wet-end differences are caused by the lack of international standards in the transformation of relative humidity observations to dewpoint depression and in differing ways of calibrating data taken from the same type of instrument. Differences in sondes used in these regions are also discussed and an example of a dual ascent is shown. Some implications for remote sensing and weather prediction are highlighted.

Full access
É. Gerard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo

The need for an absolute standard for water vapor observations, in the form of a global dataset with high accuracy and good spatial resolution, has long been recognized. The European Space Agency's Water Vapour Lidar Experiment in Space (WALES) mission aims to meet this need by providing high-quality water vapor profiles, globally and with good vertical resolution, using a differential absorption lidar (DIAL) system in a low earth-orbit satellite. WALES will be the first active system to measure humidity from space routinely. With launch envisaged in the 2008–2010 time frame and a minimum duration of two years, the primary mission goals are to (a) contribute to scientific research and (b) demonstrate the feasibility of longer-term operational missions. This paper assesses the benefits of the anticipated data to NWP through quantitative analysis of information content. Good vertical resolution and low random errors are shown to give substantial improvements in analysis error in one-dimensional variational data assimilation (1DVAR) comparisons with advanced infrared sounders. In addition, the vertical extent of the profiles is shown to reach 16.5 km or ~100 hPa, well above the limit of radiance assimilation (13 km or 200 hPa). Also highlighted are important applications in atmospheric sciences and climate research that would benefit from the low bias promised by spaceborne DIAL data and their complementarity to other types of humidity observations.

Full access
L. Garand, J. Feng, S. Heilliette, Y. Rochon, and A. P. Trishchenko

Abstract

There is a well-recognized spatiotemporal meteorological observation gap at latitudes higher than 55°, especially in the region 55°–70°. A possible solution to address this issue is a constellation of four satellites in a highly elliptical orbit (HEO), that is, two satellites for each polar region. An important satellite product to support weather prediction is atmospheric motion wind vectors (AMVs). This study uses observing system simulation experiments (OSSEs) to evaluate the benefit to forecasts resulting from the assimilation of HEO AMVs covering one or both polar regions. The OSSE employs the operational global data assimilation system of the Canadian Meteorological Center. HEO AMVs are assimilated north of 50°N and south of 50°S. From 2-month assimilation cycles, the study examines the following three issues: 1) the impact of AMV assimilation in the real system, and how this compares to the impact seen in the simulated system, 2) the added value of HEO AMVs in the Arctic on top of what is currently available, and 3) the relative impact of HEO AMVs in the Arctic and Antarctic in comparison with no AMVs. Although the simulated impact of currently available AMVs is somewhat higher than the real impact, a firm conclusion is that the added value of Arctic HEO AMVs is substantial, improving predictability at days 3–5 by a few hours in terms of 500-hPa geopotential height. The impact of HEO AMVs is relatively stronger in the Southern Hemisphere. Forecast validation of atmospheric profiles against the simulated “true” state and against analyses generated within the assimilation cycles yields very similar results beyond 48 h.

Full access
Maziar Bani Shahabadi, Stéphane Bélair, Bernard Bilodeau, Marco L. Carrera, and Louis Garand

Abstract

A new ensemble-based land surface data assimilation (DA) system is coupled with the atmospheric four-dimensional ensemble-variational data assimilation (4D-EnVar) system with the goal of improving the analyses within Environment and Climate Change Canada’s Global Deterministic Prediction System. Since 2001, the sequential assimilation of surface variables is used to generate the initial conditions to launch the Global Environmental Multiscale (GEM) coupled forecast model. The work presented here is to replace the sequential DA with an independent surface DA system, the Canadian Land Data Assimilation System (CaLDAS) assimilating screen-level observations, and to compare assimilation experiments with CaLDAS run in uncoupled and weakly coupled modes. In the uncoupled mode, CaLDAS is used to initialize the forecast without interacting with the 4D-EnVar system. In the coupled mode, the analyses generated from CaLDAS and 4D-EnVar are used to initialize the forecast model. The analyses and forecasts from uncoupled and coupled runs are evaluated against surface and radiosonde observations over different subdomains to conclude the impact of coupling CaLDAS with 4D-EnVar. Results indicate a statistically significant reduction in bias and standard deviation at the surface for screen-level temperature and dewpoint temperature on the order of 0.1 K, and in the lower troposphere between 1000 and 500 hPa on the order of 0.1 dam for geopotential height and 0.1 K for air temperature and dewpoint depression in the coupled DA runs. The positive impact persists up to 5 days over some subdomains. It is concluded that the coupled DA approach generally performs better than the uncoupled version.

Open access
B. Soden, S. Tjemkes, J. Schmetz, R. Saunders, J. Bates, B. Ellingson, R. Engelen, L. Garand, D. Jackson, G. Jedlovec, T. Kleespies, D. Randel, P. Rayer, E. Salathe, D. Schwarzkopf, N. Scott, B. Sohn, S. de Souza-Machado, L. Strow, D. Tobin, D. Turner, P. van Delst, and T. Wehr

An intercomparison of radiation codes used in retrieving upper-tropospheric humidity (UTH) from observations in the ν2 (6.3 μm) water vapor absorption band was performed. This intercomparison is one part of a coordinated effort within the Global Energy and Water Cycle Experiment Water Vapor Project to assess our ability to monitor the distribution and variations of upper-tropospheric moisture from spaceborne sensors. A total of 23 different codes, ranging from detailed line-by-line (LBL) models, to coarser-resolution narrowband (NB) models, to highly parameterized single-band (SB) models participated in the study. Forward calculations were performed using a carefully selected set of temperature and moisture profiles chosen to be representative of a wide range of atmospheric conditions. The LBL model calculations exhibited the greatest consistency with each other, typically agreeing to within 0.5 K in terms of the equivalent blackbody brightness temperature (Tb). The majority of NB and SB models agreed to within ±1 K of the LBL models, although a few older models exhibited systematic Tb biases in excess of 2 K. A discussion of the discrepancies between various models, their association with differences in model physics (e.g., continuum absorption), and their implications for UTH retrieval and radiance assimilation is presented.

Full access