Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: L. N. Rogers x
  • Refine by Access: All Content x
Clear All Modify Search
L. N. Rogers

Abstract

Full access
David A. R. Kristovich, George S. Young, Johannes Verlinde, Peter J. Sousounis, Pierre Mourad, Donald Lenschow, Robert M. Rauber, Mohan K. Ramamurthy, Brian F. Jewett, Kenneth Beard, Elen Cutrim, Paul J. DeMott, Edwin W. Eloranta, Mark R. Hjelmfelt, Sonia M. Kreidenweis, Jon Martin, James Moore, Harry T. Ochs III, David C Rogers, John Scala, Gregory Tripoli, and John Young

A severe 5-day lake-effect storm resulted in eight deaths, hundreds of injuries, and over $3 million in damage to a small area of northeastern Ohio and northwestern Pennsylvania in November 1996. In 1999, a blizzard associated with an intense cyclone disabled Chicago and much of the U.S. Midwest with 30–90 cm of snow. Such winter weather conditions have many impacts on the lives and property of people throughout much of North America. Each of these events is the culmination of a complex interaction between synoptic-scale, mesoscale, and microscale processes.

An understanding of how the multiple size scales and timescales interact is critical to improving forecasting of these severe winter weather events. The Lake-Induced Convection Experiment (Lake-ICE) and the Snowband Dynamics Project (SNOWBAND) collected comprehensive datasets on processes involved in lake-effect snowstorms and snowbands associated with cyclones during the winter of 1997/98. This paper outlines the goals and operations of these collaborative projects. Preliminary findings are given with illustrative examples of new state-of-the-art research observations collected. Analyses associated with Lake-ICE and SNOWBAND hold the promise of greatly improving our scientific understanding of processes involved in these important wintertime phenomena.

Full access
Richard Rotunno, Leonard J. Pietrafesa, John S. Allen, Bradley R. Colman, Clive M. Dorman, Carl W. Kreitzberg, Stephen J. Lord, Miles G. McPhee, George L. Mellor, Christopher N. K. Mooers, Pearn P. Niiler, Roger A. Pielke Sr., Mark D. Powell, David P. Rogers, James D. Smith, and Lian Xie

U.S. Weather Research Program (USWRP) prospectus development teams (PDTs) are small groups of scientists that are convened by the USWRP lead scientist on a one-time basis to discuss critical issues and to provide advice related to future directions of the program. PDTs are a principal source of information for the Science Advisory Committee, which is a standing committee charged with the duty of making recommendations to the Program Office based upon overall program objectives. PDT-1 focused on theoretical issues, and PDT-2 on observational issues; PDT-3 is the first of several to focus on more specialized topics. PDT-3 was convened to identify forecasting problems related to U.S. coastal weather and oceanic conditions, and to suggest likely solution strategies.

There were several overriding themes that emerged from the discussion. First, the lack of data in and over critical regions of the ocean, particularly in the atmospheric boundary layer, and the upper-ocean mixed layer were identified as major impediments to coastal weather prediction. Strategies for data collection and dissemination, as well as new instrument implementation, were discussed. Second, fundamental knowledge of air–sea fluxes and boundary layer structure in situations where there is significant mesoscale variability in the atmosphere and ocean is needed. Companion field studies and numerical prediction experiments were discussed. Third, research prognostic models suggest that future operational forecast models pertaining to coastal weather will be high resolution and site specific, and will properly treat effects of local coastal geography, orography, and ocean state. The view was expressed that the exploration of coupled air-sea models of the coastal zone would be a particularly fruitful area of research. PDT-3 felt that forecasts of land-impacting tropical cyclones, Great Lakes-affected weather, and coastal cyclogenesis, in particular, would benefit from such coordinated modeling and field efforts. Fourth, forecasting for Arctic coastal zones is limited by our understanding of how sea ice forms. The importance of understanding air-sea fluxes and boundary layers in the presence of ice formation was discussed. Finally, coastal flash flood forecasting via hydrologic models is limited by the present accuracy of measured and predicted precipitation and storm surge events. Strategies for better ways to improve the latter were discussed.

Full access
J. A. Curry, P. V. Hobbs, M. D. King, D. A. Randall, P. Minnis, G. A. Isaac, J. O. Pinto, T. Uttal, A. Bucholtz, D. G. Cripe, H. Gerber, C. W. Fairall, T. J. Garrett, J. Hudson, J. M. Intrieri, C. Jakob, T. Jensen, P. Lawson, D. Marcotte, L. Nguyen, P. Pilewskie, A. Rangno, D. C. Rogers, K. B. Strawbridge, F. P. J. Valero, A. G. Williams, and D. Wylie

An overview is given of the First ISCCP Regional Experiment Arctic Clouds Experiment that was conducted during April–July 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud–radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and at Barrow, Alaska. This paper describes the programmatic and scientific objectives of the project, the experimental design (including research platforms and instrumentation), the conditions that were encountered during the field experiment, and some highlights of preliminary observations, modeling, and satellite remote sensing studies.

Full access