Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: L. de Steur x
  • All content x
Clear All Modify Search
L. de Steur, P. J. van Leeuwen, and S. S. Drijfhout

Abstract

In a numerical, isopycnal, ocean model the mixing is investigated with the environment of two idealized Agulhas rings, one that splits, and one that remains coherent. The evolution of a passive tracer, initially contained within the rings, shows that tracer leakage is associated with the formation of filaments in the early stage of ring evolution. These filaments reach down to the thermocline. In the deepest layers leakage occurs on a larger scale. Self-advection of the rings is very irregular, and it is not possible to compute a Lagrangian boundary in order to estimate the transport of leakage from the rings. To describe the processes that govern tracer leakage, in a coordinate frame moving with the ring a kinematic separatrix is defined in the streamfunction field for the nondivergent flow. Initially, filaments arise because of the elongation of the ring, which is mainly governed by an m = 2 instability that is collaborating with differential rotation. Because of beta, the symmetry is destroyed related to the separatrix associated with a stagnation point in the flow. The filament upstream of the stagnation point grows much faster and is associated with the bulk of tracer leakage. Mixing is enhanced by time dependence of the separatrix. As a result, there are no large differences between the leakage from a coherent ring, where the m = 2 instability equilibrates, and from a splitting ring, where the m = 2 instability keeps growing, which confirms that the amount of leakage is mainly governed by the ring's initial deformation combined with unsteady self-advection of the ring and not by the splitting of the ring. The decay of tracer content in the thermocline shows that in the first months up to 40% of the ring water can be mixed with the environment. In deeper layers the decay of tracer content may reach up to 90%.

Full access
A. K. Pavlov, A. Meyer, A. Rösel, L. Cohen, J. King, P. Itkin, J. Negrel, S. Gerland, S. R. Hudson, P. A. Dodd, L. de Steur, S. Mathisen, N. Cobbing, and M. A. Granskog

Abstract

Effective science communication is essential to share knowledge and recruit the next generation of researchers. Science communication to the general public can, however, be hampered by limited resources and a lack of incentives in the academic environment. Various social media platforms have recently emerged, providing free and simple science communication tools to reach the public and young people especially, an audience often missed by more conventional outreach initiatives. While individual researchers and large institutions are present on social media, smaller research groups are underrepresented. As a small group of oceanographers, sea ice scientists, and atmospheric scientists at the Norwegian Polar Institute, we share our experience establishing, developing, and maintaining a successful Arctic science communication initiative (@oceanseaicenpi) on Instagram, Twitter, and Facebook. The initiative is run entirely by a team of researchers with limited time and financial resources. It has built a broad audience of more than 7,000 followers, half of which is associated with the team’s Instagram account. To our knowledge, @oceanseaicenpi is one of the most successful Earth sciences Instagram accounts managed by researchers. The initiative has boosted the alternative metric scores of our publications and helped participating researchers become better writers and communicators. We hope to inspire and help other research groups by providing some guidelines on how to develop and conduct effective science communication via social media.

Open access
M. Susan Lozier, Sheldon Bacon, Amy S. Bower, Stuart A. Cunningham, M. Femke de Jong, Laura de Steur, Brad deYoung, Jürgen Fischer, Stefan F. Gary, Blair J. W. Greenan, Patrick Heimbach, Naomi P. Holliday, Loïc Houpert, Mark E. Inall, William E. Johns, Helen L. Johnson, Johannes Karstensen, Feili Li, Xiaopei Lin, Neill Mackay, David P. Marshall, Herlé Mercier, Paul G. Myers, Robert S. Pickart, Helen R. Pillar, Fiammetta Straneo, Virginie Thierry, Robert A. Weller, Richard G. Williams, Chris Wilson, Jiayan Yang, Jian Zhao, and Jan D. Zika

Abstract

For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.

Full access