Search Results

You are looking at 1 - 10 of 58 items for

  • Author or Editor: Lance M. Leslie x
  • Refine by Access: All Content x
Clear All Modify Search
Hamish A. Ramsay
and
Lance M. Leslie

Abstract

The interaction between complex terrain and a landfalling tropical cyclone (TC) over northeastern Australia is investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). Severe TC Larry (in March 2006) made landfall over an area of steep coastal orography and caused extensive damage. The damage pattern suggested that the mountainous terrain had a large influence on the TC wind field, with highly variable damage across relatively small distances. The major aims in this study were to reproduce the observed features of TC Larry, including track, intensity, speed of movement, size, decay rate, and the three-dimensional wind field using realistic high-resolution terrain data and a nested grid with a horizontal spacing of 1 km for the finest domain (referred to as CTRL), and to assess how the above parameters change when the terrain height is set to zero (NOTOPOG). The TC track for CTRL, including the timing and location of landfall, was in close agreement with observation, with the model eye overlapping the location of the observed eye at landfall. Setting the terrain height to zero resulted in a more southerly track and a more intense storm at landfall. The orography in CTRL had a large impact on the TC’s 3D wind field, particularly in the boundary layer where locally very high wind speeds, up to 68 m s−1, coincided with topographic slopes and ridges. The orography also affected precipitation, with localized maxima in elevated regions matching observed rainfall rates. In contrast, the precipitation pattern for the NOTOPOG TC was more symmetric and rainfall totals decreased rapidly with distance from the storm’s center. Parameterized maximum surface wind gusts were located beneath strong boundary layer jets. Finally, small-scale banding features were evident in the surface wind field over land for the NOTOPOG TC, owing to the interaction between the TC boundary layer flow and land surface characteristics.

Full access
Lance M. Leslie
and
R. James Purser

Abstract

Through the use of the dimensional splitting “cascade” method of grid-to-grid interpolation, it is shown that consistently high-order-accurate semi-Lagrangian integration of a three-dimensional hydrostatic primitive equations model can be carried out using forward (downstream) trajectories instead of the backward (upstream) trajectory computations that are more commonly employed in semi-Lagrangian models. Apart from the efficiency resulting directly from the adoption of the cascade method, improved computational performance is achieved partly by the selective implicit treatment of only the deepest vertical gravity modes and partly by obviating the need to iterate the estimation of each trajectory's location. Perhaps the main distinction of our present semi-Lagrangian method is its inherent exact conservation of mass and passive tracers. This is achieved by adopting a simple variant of the cascade interpolation that incorporates mass (and tracer) conservation directly and at only a very modest additional cost. The conserving cascade, which is described in detail, is a generic algorithm that can be applied at arbitrary order of accuracy.

Tests of the new mass-conserving scheme in a regional forecast model show small but consistent improvements in accuracy at 48 h. It is suggested that the benefits to extended global forecasting and simulation should be much greater.

Full access
LANCE M. LESLIE
and
BRYANT J. McAVANEY

Abstract

The Helmholtz-type equation arises in many areas of fluid dynamics, and, in recent years, there has been a rapid increase in the numerical procedures available for solving the equation. In this note, the various methods currently available are discussed, and representatives from the main categories are compared.

We suggest that for certain problems, the most important of which is Poisson's equation on a rectangle, direct methods are now available that are far superior to widely used iterative methods. For problems involving irregular domains, mixed boundary conditions, and variable Helmholtz coefficients, however, existing direct methods often cannot be used with the same flexibility as iterative methods; there is a continuing need to extend direct methods to these more general cases.

Full access
Bradford S. Barrett
and
Lance M. Leslie

Abstract

The leading intraseasonal mode of atmospheric and oceanic variability, the Madden–Julian oscillation (MJO), influences tropical and extratropical sea level pressure, temperature, divergent and rotational wind components, moisture, and deep convection. As a 40- to 50-day oscillation, the MJO is also known to influence tropical phenomena, including tropical cyclone (TC) activity in various TC basins. The links between the MJO and multiple measures of TC activity, including genesis, landfall, and an integrative accumulated cyclone energy (ACE) index, were quantified for multiple TC-formation basins across the Western Hemisphere, including the North Atlantic and northeast Pacific Ocean and subbasins, for the period 1978–2006. Using this relatively long (29 yr) TC dataset and employing an upper-tropospheric MJO diagnostic that is physically meaningful over the entire Western Hemisphere, this study extends existing research on the relationships between the MJO and TCs. The NOAA Climate Prediction Center’s operational MJO index, derived from 200-hPa velocity potential data, was divided into three phases. Relative frequencies of the MJO phases were compared with observed levels of TC activity using a binomial distribution hypothesis test. The MJO was found to statistically significantly modulate the frequency of TC genesis, intensification, and landfall in the nine TC basins studied. For example, when an MJO index was large and positive at 120°W, hurricanes and intense hurricanes were 4 times as likely to make landfall in the North Atlantic. This modulation of TC activity, including landfall patterns in the North Atlantic, was physically linked to the upper-atmospheric response to the eastward-propagating MJO and is evident as a dipole of TC activity between Pacific and Atlantic subbasins.

Full access
Kevin H. Goebbert
and
Lance M. Leslie

Abstract

Tropical cyclone (TC) activity over the southeast Indian Ocean has been studied far less than other TC basins, such as the North Atlantic and northwest Pacific. The authors examine the interannual TC variability of the northwest Australian (NWAUS) subbasin (0°–35°S, 105°–135°E), using an Australian TC dataset for the 39-yr period of 1970–2008. Thirteen TC metrics are assessed, with emphasis on annual TC frequencies and total TC days.

Major findings are that for the NWAUS subbasin, there are annual means of 5.6 TCs and 42.4 TC days, with corresponding small standard deviations of 2.3 storms and 20.0 days. For intense TCs (WMO category 3 and higher), the annual mean TC frequency is 3.0, with a standard deviation of 1.6, and the annual average intense TC days is 7.6 days, with a standard deviation of 4.5 days. There are no significant linear trends in either mean annual TC frequencies or TC days. Notably, all 13 variability metrics show no trends over the 39-yr period and are less dependent upon standard El Niño–Southern Oscillation (ENSO) variables than many other TC basins, including the rest of the Australian region basin. The largest correlations with TC frequency were geopotential heights for June–August at 925 hPa over the South Atlantic Ocean (r = −0.65) and for April–June at 700 hPa over North America (−0.64). For TC days the largest correlations are geopotential heights for July–September at 1000 hPa over the South Atlantic Ocean (−0.7) and for April–June at 850 hPa over North America (−0.58). Last, wavelet analyses of annual TC frequencies and TC days reveal periodicities at ENSO and decadal time scales. However, the TC dataset is too short for conclusive evidence of multidecadal periodicities.

Given the large correlations revealed by this study, developing and testing of a multivariate seasonal TC prediction scheme has commenced, with lead times up to 6 months.

Full access
Diandong Ren
and
Lance M. Leslie

Abstract

Factors affecting aviation fuel efficiency are thermal and propulsive efficiencies, and overall drag on aircraft. An along-the-route integration is made for all direct flights in a baseline year, 2010, under current and future atmospheric conditions obtained from 26 climate models under the representative concentration pathway (RCP) 8.5 scenario. Thermal efficiency and propulsive efficiency are affected differently, with the former decreasing by 0.38% and the latter increasing by 0.35%. Consequently, the overall engine efficiency decrease is merely <0.02%. Over the same period, the skin frictional drag increases ~3.5% from the increased air viscosity. This component is only 5.7% of the total drag, and the ~3.5% increase in air viscosity accounts for a 0.2% inefficiency in fuel consumption. A t test is performed for the multiple-model ensemble mean time series of fuel efficiency decrease for two 20-yr periods centered on years 2010 and 2090, respectively. The trend is found to be statistically significant (p value = 0.0017). The total decrease in aircraft fuel efficiency is equivalent to ~0.68 billion gallons of additional fuel annually, a qualitatively robust conclusion, but quantitatively there is a large interclimate model spread.

Full access
Diandong Ren
and
Lance M. Leslie

Abstract

In the first half of this research, this study examines the trend in tropical cyclone (TC) activity over the economically important northwest Western Australia (NWA) TC basin (equator–40°S, 80°–140°E) based on statistical analyses of the International Best Track Archive for Climate Stewardship (IBTrACS) and large-scale environmental variables, which are known to be closely linked to the formation and longevity of TCs, from NCEP–NCAR reanalyses. In the second half, changes in TC activity from climate model projections for 2000–60 are compared for (i) no scenario change (CNTRL) and (ii) the moderate IPCC Special Report on Emission Scenarios (SRES) A1B scenario (EGHG). The aims are to (i) determine differences in mean annual TC frequency and intensity trends, (ii) test for differences between genesis and decay positions of CNTRL and EGHG projections using a nonparametric permutation test, and (iii) use kernel density estimation (KDE) for a cluster analysis of CNTRL and EGHG genesis and decay positions and generate their probability distribution functions.

The main findings are there is little difference in the mean TC number over the period, but there is a difference in mean intensity; CNTRL and EGHG projections differ in mean genesis and decay positions in both latitude and longitude; and the KDE reveals just one cluster in both CNTRL and EGHG mean genesis and decay positions. The EGHG KDE is possibly disjoint, with a wider longitudinal spread. The results can be explained in terms of physical, meteorological, and sea surface temperature (SST) conditions, which provide natural limits to the spread of the genesis and decay points.

Full access
Diandong Ren
and
Lance M. Leslie

Abstract

As a conveyor belt transferring inland ice to ocean, ice shelves shed mass through large, systematic tabular calving, which also plays a major role in the fluctuation of the buttressing forces. Tabular iceberg calving involves two stages: first is systematic cracking, which develops after the forward-slanting front reaches a limiting extension length determined by gravity–buoyancy imbalance; second is fatigue separation. The latter has greater variability, producing calving irregularity. Whereas ice flow vertical shear determines the timing of the systematic cracking, wave actions are decisive for ensuing viscoplastic fatigue. Because the frontal section has its own resonance frequency, it reverberates only to waves of similar frequency. With a flow-dependent, nonlocal attrition scheme, the present ice model [Scalable Extensible Geoflow Model for Environmental Research-Ice flow submodel (SEGMENT-Ice)] describes an entire ice-shelf life cycle. It is found that most East Antarctic ice shelves have higher resonance frequencies, and the fatigue of viscoplastic ice is significantly enhanced by shoaling waves from both storm surges and infragravity waves (~5 × 10−3 Hz). The two largest embayed ice shelves have resonance frequencies within the range of tsunami waves. When approaching critical extension lengths, perturbations from about four consecutive tsunami events can cause complete separation of tabular icebergs from shelves. For shelves with resonance frequencies matching storm surge waves, future reduction of sea ice may impose much larger deflections from shoaling, storm-generated ocean waves. Although the Ross Ice Shelf (RIS) total mass varies little in the twenty-first century, the mass turnover quickens and the ice conveyor belt is ~40% more efficient by the late twenty-first century, reaching 70 km3 yr−1. The mass distribution shifts oceanward, favoring future tabular calving.

Full access
Alexandre O. Fierro
and
Lance M. Leslie

Abstract

Over the past century, and especially after the 1970s, rainfall observations show an increase (decrease) of the wet summer (winter) season rainfall over northwest (southwest) Western Australia. The rainfall in central west Western Australia (CWWA), however, has exhibited comparatively much weaker coastal trends, but a more prominent inland increase during the wet summer season. Analysis of seasonally averaged rainfall data from a group of stations, representative of both the coastal and inland regions of CWWA, revealed that rainfall trends during the 1958–2010 period in the wet months of November–April were primarily associated with El Niño–Southern Oscillation (ENSO), and with the southern annular mode (SAM) farther inland. During the wet months of May–October, the Indian Ocean dipole (IOD) showed the most robust relationships. Those results hold when the effects of ENSO or IOD are excluded, and were confirmed using a principal component analysis of sea surface temperature (SST) anomalies, rainfall wavelet analyses, and point-by-point correlations of rainfall with global SST anomaly fields. Although speculative, given their long-term averages, reanalysis data suggest that from 1958 to 2010 the increase in CWWA inland rainfall largely is attributable to an increasing cyclonic anomaly trend over CWWA, bringing onshore moist tropical flow to the Pilbara coast. During May–October, the flow anomaly exhibits a transition from an onshore to offshore flow regime in the 2001–10 decade, which is consistent with the observed weaker drying trend during this period.

Full access