Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Lars H. Smedsrud x
  • All content x
Clear All Modify Search
Marius Årthun, Tor Eldevik, and Lars H. Smedsrud

Abstract

During recent decades Arctic sea ice variability and retreat during winter have largely been a result of variable ocean heat transport (OHT). Here we use the Community Earth System Model (CESM) large ensemble simulation to disentangle internally and externally forced winter Arctic sea ice variability, and to assess to what extent future winter sea ice variability and trends are driven by Atlantic heat transport. We find that OHT into the Barents Sea has been, and is at present, a major source of internal Arctic winter sea ice variability and predictability. In a warming world (RCP8.5), OHT remains a good predictor of winter sea ice variability, although the relation weakens as the sea ice retreats beyond the Barents Sea. Warm Atlantic water gradually spreads downstream from the Barents Sea and farther into the Arctic Ocean, leading to a reduced sea ice cover and substantial changes in sea ice thickness. The future long-term increase in Atlantic heat transport is carried by warmer water as the current itself is found to weaken. The externally forced weakening of the Atlantic inflow to the Barents Sea is in contrast to a strengthening of the Nordic Seas circulation, and is thus not directly related to a slowdown of the Atlantic meridional overturning circulation (AMOC). The weakened Barents Sea inflow rather results from regional atmospheric circulation trends acting to change the relative strength of Atlantic water pathways into the Arctic. Internal OHT variability is associated with both upstream ocean circulation changes, including AMOC, and large-scale atmospheric circulation anomalies reminiscent of the Arctic Oscillation.

Open access
Ingrid H. Onarheim, Tor Eldevik, Lars H. Smedsrud, and Julienne C. Stroeve

Abstract

The Arctic Ocean is currently on a fast track toward seasonally ice-free conditions. Although most attention has been on the accelerating summer sea ice decline, large changes are also occurring in winter. This study assesses past, present, and possible future change in regional Northern Hemisphere sea ice extent throughout the year by examining sea ice concentration based on observations back to 1950, including the satellite record since 1979. At present, summer sea ice variability and change dominate in the perennial ice-covered Beaufort, Chukchi, East Siberian, Laptev, and Kara Seas, with the East Siberian Sea explaining the largest fraction of September ice loss (22%). Winter variability and change occur in the seasonally ice-covered seas farther south: the Barents Sea, Sea of Okhotsk, Greenland Sea, and Baffin Bay, with the Barents Sea carrying the largest fraction of loss in March (27%). The distinct regions of summer and winter sea ice variability and loss have generally been consistent since 1950, but appear at present to be in transformation as a result of the rapid ice loss in all seasons. As regions become seasonally ice free, future ice loss will be dominated by winter. The Kara Sea appears as the first currently perennial ice-covered sea to become ice free in September. Remaining on currently observed trends, the Arctic shelf seas are estimated to become seasonally ice free in the 2020s, and the seasonally ice-covered seas farther south to become ice free year-round from the 2050s.

Open access
Isabela Le Bras, Fiamma Straneo, Morven Muilwijk, Lars H. Smedsrud, Feili Li, M. Susan Lozier, and N. Penny Holliday

Abstract

Fresh Arctic waters flowing into the Atlantic are thought to have two primary fates. They may be mixed into the deep ocean as part of the overturning circulation, or flow alongside regions of deep water formation without impacting overturning. Climate models suggest that as increasing amounts of fresh water enter the Atlantic, the overturning circulation will be disrupted, yet we lack an understanding of how much fresh water is mixed into the overturning circulation’s deep limb in the present day. To constrain these fresh water pathways, we build steady-state volume, salt, and heat budgets east of Greenland that are initialized with observations and closed using inverse methods. Fresh water sources are split into oceanic Polar Waters from the Arctic and surface fresh water fluxes, which include net precipitation, runoff, and ice melt, to examine how they imprint the circulation differently. We find that 65 mSv of the total 110 mSv of surface fresh water fluxes that enter our domain participate in the overturning circulation, as do 0.6 Sv of the total 1.2 Sv of Polar Waters that flow through Fram Strait. Based on these results, we hypothesize that the overturning circulation is more sensitive to future changes in Arctic fresh water outflow and precipitation, while Greenland runoff and iceberg melt are more likely to stay along the coast of Greenland.

Open access