Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Lars Peter Riishojgaard x
  • Refine by Access: All Content x
Clear All Modify Search
Zaizhong Ma
,
Lars Peter Riishøjgaard
,
Michiko Masutani
,
John S. Woollen
, and
George D. Emmitt

Abstract

The Global Wind Observing Sounder (GWOS) concept, which has been developed as a hypothetical space-based hybrid wind lidar system by NASA in response to the 2007 National Research Council (NRC) decadal survey, is expected to provide global wind profile observations with high vertical resolution, precision, and accuracy when realized. The assimilation of Doppler wind lidar (DWL) observations anticipated from the GWOS is being conducted as a series of observing system simulation experiments (OSSEs) at the Joint Center for Satellite Data Assimilation (JCSDA). A companion paper (Riishøjgaard et al.) describes the simulation of this lidar wind data and evaluates the impact on global numerical weather prediction (NWP) of the baseline GWOS using a four-telescope configuration to provide independent line-of-sight wind speeds, while this paper sets out to assess the NWP impact of GWOS equipped with alternative paired configurations of telescopes. The National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) analysis system and the Global Forecast System (GFS) were used, at a resolution of T382 with 64 layers, as the assimilation system and the forecast model, respectively, in these lidar OSSEs. A set of 45-day assimilation and forecast experiments from 2 July to 15 August 2005 was set up and executed.

In this OSSE study, a control simulation utilizing all of the data types assimilated in the operational GSI/GFS system was compared to three OSSE simulations that added lidar wind data from the different configurations of telescopes (one-, two-, and four-look configurations). First, the root-mean-square error (RMSE) of wind analysis is compared against the nature run. A significant reduction of the stratospheric RMSE of wind analyses is found for all latitudes when lidar wind profiles are used in the assimilation system. The forecast impacts of lidar data on the wind and mass forecasts are also presented. In addition, the anomaly correlations (AC) of geopotential height forecasts at 500 hPa were evaluated to compare the control and different GWOS telescope configuration experiments. The results show that the assimilation of lidar data from the GWOS (one, two, or four looks) can improve the NCEP GFS wind and mass field forecasts. The addition of the simulated lidar wind observations leads to a statistically significant increase in AC scores.

Full access

NPOESS

Next-Generation Operational Global Earth Observations

Thomas F. Lee
,
Craig S. Nelson
,
Patrick Dills
,
Lars Peter Riishojgaard
,
Andy Jones
,
Li Li
,
Steven Miller
,
Lawrence E. Flynn
,
Gary Jedlovec
,
William McCarty
,
Carl Hoffman
, and
Gary McWilliams

The United States is merging its two polar-orbiting operational environmental satellite programs operated by the Department of Commerce and the Department of Defense into a single system, which is called the National Polar-orbiting Operational Environmental Satellite System (NPOESS). During the next decade, NPOESS will provide global operational data to meet many of the needs of weather forecasters, climate researchers, and global decision makers for remotely sensed Earth science data and global environmental monitoring. The NPOESS Preparatory Project (NPP) will be launched in 2011 as a precursor to NPOESS to reduce final development risks for NPOESS and to provide continuity of global imaging and atmospheric sounding data from the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) missions. Beginning in 2014, NPOESS spacecraft will be launched into an afternoon orbit and in 2016 into an early-morning orbit to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for space-based, remotely sensed environmental data. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteorological Operation (MetOp) spacecraft will complement NPOESS in a midmorning orbit. The joint constellation will provide global coverage with a data refresh rate of approximately four hours. NPOESS will observe more phenomena simultaneously from space and deliver a data volume significantly greater than its operational predecessors with substantially improved data delivery to users. Higher-resolution (spatial and spectral) and more accurate imaging and atmospheric sounding data will enable improvements in short- to medium-range weather forecasts. Multispectral and hyperspectral instruments on NPOESS will provide global imagery and sounding products useful to the forecaster that are complementary to those available from geostationary satellites. NPOESS will support the operational needs of meteorological, oceanographic, environmental, climatic, and space environmental remote sensing programs and provide continuity of data for climate researchers. This article that describes NPOESS was completed and accepted for publication prior to the White House decision in February 2010 ordering a major restructuring of the NPOESS program. The Department of Commerce will now assume primary responsibility for the afternoon polar-orbiting operational environmental satellite orbit and the Department of Defense will take primary responsibility for the early morning orbit. However, NPP, as described in this article, is still scheduled to be launched in 2011. Several of the instruments and program elements described in this article are also likely to be carried forward into future U.S. polar-orbiting operational environmental satellite missions.

Full access
Ad Stoffelen
,
Angela Benedetti
,
Régis Borde
,
Alain Dabas
,
Pierre Flamant
,
Mary Forsythe
,
Mike Hardesty
,
Lars Isaksen
,
Erland Källén
,
Heiner Körnich
,
Tsengdar Lee
,
Oliver Reitebuch
,
Michael Rennie
,
Lars-Peter Riishøjgaard
,
Harald Schyberg
,
Anne Grete Straume
, and
Michael Vaughan

Abstract

The Aeolus mission objectives are to improve numerical weather prediction (NWP) and enhance the understanding and modeling of atmospheric dynamics on global and regional scale. Given the first successes of Aeolus in NWP, it is time to look forward to future vertical wind profiling capability to fulfill the rolling requirements in operational meteorology. Requirements for wind profiles and information on vertical wind shear are constantly evolving. The need for high-quality wind and profile information to capture and initialize small-amplitude, fast-evolving, and mesoscale dynamical structures increases, as the resolution of global NWP improved well into the 3D turbulence regime on horizontal scales smaller than 500 km. In addition, advanced requirements to describe the transport and dispersion of atmospheric constituents and better depict the circulation on climate scales are well recognized. Direct wind profile observations over the oceans, tropics, and Southern Hemisphere are not provided by the current global observing system. Looking to the future, most other wind observation techniques rely on cloud or regions of water vapor and are necessarily restricted in coverage. Therefore, after its full demonstration, an operational Aeolus-like follow-on mission obtaining globally distributed wind profiles in clear air by exploiting molecular scattering remains unique.

Full access
Ad Stoffelen
,
Angela Benedetti
,
Régis Borde
,
Alain Dabas
,
Pierre Flamant
,
Mary Forsythe
,
R. Michael Hardesty
,
Lars Isaksen
,
Erland Källén
,
Heiner Körnich
,
Tsengdar Lee
,
Oliver Reitebuch
,
Michael Rennie
,
Lars-Peter Riishøjgaard
,
Harald Schyberg
,
Anne Grete Straume
, and
Michael Vaughan
Full access
F. Martin Ralph
,
Janet Intrieri
,
David Andra Jr.
,
Robert Atlas
,
Sid Boukabara
,
David Bright
,
Paula Davidson
,
Bruce Entwistle
,
John Gaynor
,
Steve Goodman
,
Jiann-Gwo Jiing
,
Amy Harless
,
Jin Huang
,
Gary Jedlovec
,
John Kain
,
Steven Koch
,
Bill Kuo
,
Jason Levit
,
Shirley Murillo
,
Lars Peter Riishojgaard
,
Timothy Schneider
,
Russell Schneider
,
Travis Smith
, and
Steven Weiss

Test beds have emerged as a critical mechanism linking weather research with forecasting operations. The U.S. Weather Research Program (USWRP) was formed in the 1990s to help identify key gaps in research related to major weather prediction problems and the role of observations and numerical models. This planning effort ultimately revealed the need for greater capacity and new approaches to improve the connectivity between the research and forecasting enterprise.

Out of this developed the seeds for what is now termed “test beds.” While many individual projects, and even more broadly the NOAA/National Weather Service (NWS) Modernization, were successful in advancing weather prediction services, it was recognized that specific forecast problems warranted a more focused and elevated level of effort. The USWRP helped develop these concepts with science teams and provided seed funding for several of the test beds described.

Based on the varying NOAA mission requirements for forecasting, differences in the organizational structure and methods used to provide those services, and differences in the state of the science related to those forecast challenges, test beds have taken on differing characteristics, strategies, and priorities. Current test bed efforts described have all emerged between 2000 and 2011 and focus on hurricanes (Joint Hurricane Testbed), precipitation (Hydrometeorology Testbed), satellite data assimilation (Joint Center for Satellite Data Assimilation), severe weather (Hazardous Weather Testbed), satellite data support for severe weather prediction (Short-Term Prediction Research and Transition Center), mesoscale modeling (Developmental Testbed Center), climate forecast products (Climate Testbed), testing and evaluation of satellite capabilities [Geostationary Operational Environmental Satellite-R Series (GOES-R) Proving Ground], aviation applications (Aviation Weather Testbed), and observing system experiments (OSSE Testbed).

Full access
Wayman E. Baker
,
Robert Atlas
,
Carla Cardinali
,
Amy Clement
,
George D. Emmitt
,
Bruce M. Gentry
,
R. Michael Hardesty
,
Erland Källén
,
Michael J. Kavaya
,
Rolf Langland
,
Zaizhong Ma
,
Michiko Masutani
,
Will McCarty
,
R. Bradley Pierce
,
Zhaoxia Pu
,
Lars Peter Riishojgaard
,
James Ryan
,
Sara Tucker
,
Martin Weissmann
, and
James G. Yoe

The three-dimensional global wind field is the most important remaining measurement needed to accurately assess the dynamics of the atmosphere. Wind information in the tropics, high latitudes, and stratosphere is particularly deficient. Furthermore, only a small fraction of the atmosphere is sampled in terms of wind profiles. This limits our ability to optimally specify initial conditions for numerical weather prediction (NWP) models and our understanding of several key climate change issues.

Because of its extensive wind measurement heritage (since 1968) and especially the rapid recent technology advances, Doppler lidar has reached a level of maturity required for a space-based mission. The European Space Agency (ESA)'s Atmospheric Dynamics Mission Aeolus (ADM-Aeolus) Doppler wind lidar (DWL), now scheduled for launch in 2015, will be a major milestone.

This paper reviews the expected impact of DWL measurements on NWP and climate research, measurement concepts, and the recent advances in technology that will set the stage for space-based deployment. Forecast impact experiments with actual airborne DWL measurements collected over the North Atlantic in 2003 and assimilated into the European Centre for Medium-Range Weather Forecasts (ECMWF) operational model are a clear indication of the value of lidar-measured wind profiles. Airborne DWL measurements collected over the western Pacific in 2008 and assimilated into both the ECMWF and U.S. Navy operational models support the earlier findings.

These forecast impact experiments confirm observing system simulation experiments (OSSEs) conducted over the past 25–30 years. The addition of simulated DWL wind observations in recent OSSEs performed at the Joint Center for Satellite Data Assimilation (JCSDA) leads to a statistically significant increase in forecast skill.

Full access