Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Laura Iraci x
  • All content x
Clear All Modify Search
Patrick Hamill, Laura T. Iraci, Emma L. Yates, Warren Gore, T. Paul Bui, Tomoaki Tanaka, and Max Loewenstein


The NASA Ames Research Center operates a new research platform for atmospheric studies: an instrumented Alpha Jet. The present complement of instruments allows for the determination of carbon dioxide, ozone, water vapor, and methane concentrations as well as measurements of three-dimensional wind speeds, temperature, and pressure. Planned future instrumentation includes an Air-Core sampler and an instrument to measure formaldehyde. We give examples of measurements that have been made, including measurements carried out during a downward spiral over an expected methane source. An attractive property of this airborne system is its ability to respond rapidly to unexpected atmospheric events such as large forest fires or severe air quality events.

Full access
Ju-Mee Ryoo, Sen Chiao, J. Ryan Spackman, Laura T. Iraci, F. Martin Ralph, Andrew Martin, Randall M. Dole, Josette E. Marrero, Emma L. Yates, T. Paul Bui, Jonathan M. Dean-Day, and Cecilia S. Chang


We examine thermodynamic and kinematic structures of terrain trapped airflows (TTAs) during an atmospheric river (AR) event impacting Northern California 10–11 March 2016 using Alpha Jet Atmospheric eXperiment (AJAX) aircraft data, in situ observations, and Weather and Research Forecasting (WRF) Model simulations. TTAs are identified by locally intensified low-level winds flowing parallel to the coastal ranges and having maxima over the near-coastal waters. Multiple mechanisms can produce TTAs, including terrain blocking and gap flows. The changes in winds can significantly alter the distribution, timing, and intensity of precipitation. We show here how different mechanisms producing TTAs evolve during this event and influence local precipitation variations. Three different periods are identified from the time-varying wind fields. During period 1 (P1), a TTA develops during synoptic-scale onshore flow that backs to southerly flow near the coast. This TTA occurs when the Froude number (Fr) is less than 1, suggesting low-level terrain blocking is the primary mechanism. During period 2 (P2), a Petaluma offshore gap flow develops, with flows turning parallel to the coast offshore and with Fr > 1. Periods P1 and P2 are associated with slightly more coastal than mountain precipitation. In period 3 (P3), the gap flow initiated during P2 merges with a pre-cold-frontal low-level jet (LLJ) and enhanced precipitation shifts to higher mountain regions. Dynamical mixing also becomes more important as the TTA becomes confluent with the approaching LLJ. The different mechanisms producing TTAs and their effects on precipitation pose challenges to observational and modeling systems needed to improve forecasts and early warnings of AR events.

Free access
Ian C. Faloona, Sen Chiao, Arthur J. Eiserloh, Raul J. Alvarez II, Guillaume Kirgis, Andrew O. Langford, Christoph J. Senff, Dani Caputi, Arthur Hu, Laura T. Iraci, Emma L. Yates, Josette E. Marrero, Ju-Mee Ryoo, Stephen Conley, Saffet Tanrikulu, Jin Xu, and Toshihiro Kuwayama


Ozone is one of the six “criteria” pollutants identified by the U.S. Clean Air Act Amendment of 1970 as particularly harmful to human health. Concentrations have decreased markedly across the United States over the past 50 years in response to regulatory efforts, but continuing research on its deleterious effects have spurred further reductions in the legal threshold. The South Coast and San Joaquin Valley Air Basins of California remain the only two “extreme” ozone nonattainment areas in the United States. Further reductions of ozone in the West are complicated by significant background concentrations whose relative importance increases as domestic anthropogenic contributions decline and the national standards continue to be lowered. These background concentrations derive largely from uncontrollable sources including stratospheric intrusions, wildfires, and intercontinental transport. Taken together the exogenous sources complicate regulatory strategies and necessitate a much more precise understanding of the timing and magnitude of their contributions to regional air pollution. The California Baseline Ozone Transport Study was a field campaign coordinated across Northern and Central California during spring and summer 2016 aimed at observing daily variations in the ozone columns crossing the North American coastline, as well as the modification of the ozone layering downwind across the mountainous topography of California to better understand the impacts of background ozone on surface air quality in complex terrain.

Full access
Cynthia Rosenzweig, Radley M. Horton, Daniel A. Bader, Molly E. Brown, Russell DeYoung, Olga Dominguez, Merrilee Fellows, Lawrence Friedl, William Graham, Carlton Hall, Sam Higuchi, Laura Iraci, Gary Jedlovec, Jack Kaye, Max Loewenstein, Thomas Mace, Cristina Milesi, William Patzert, Paul W. Stackhouse Jr., and Kim Toufectis

A partnership between Earth scientists and institutional stewards is helping the National Aeronautics and Space Administration (NASA) prepare for a changing climate and growing climate-related vulnerabilities. An important part of this partnership is an agency-wide Climate Adaptation Science Investigator (CASI) Workgroup. CASI has thus far initiated 1) local workshops to introduce and improve planning for climate risks, 2) analysis of climate data and projections for each NASA Center, 3) climate impact and adaptation toolsets, and 4) Center-specific research and engagement.

Partnering scientists with managers aligns climate expertise with operations, leveraging research capabilities to improve decision-making and to tailor risk assessment at the local level. NASA has begun to institutionalize this ongoing process for climate risk management across the entire agency, and specific adaptation strategies are already being implemented.

A case study from Kennedy Space Center illustrates the CASI and workshop process, highlighting the need to protect launch infrastructure of strategic importance to the United States, as well as critical natural habitat. Unique research capabilities and a culture of risk management at NASA may offer a pathway for other organizations facing climate risks, promoting their resilience as part of community, regional, and national strategies.

Full access