Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Laura M. Edwards x
  • Refine by Access: All Content x
Clear All Modify Search
John T. Abatzoglou, Kelly T. Redmond, and Laura M. Edwards

Abstract

A novel approach is presented to objectively identify regional patterns of climate variability within the state of California using principal component analysis on monthly precipitation and temperature data from a network of 195 climate stations statewide and an ancillary gridded database. The confluence of large-scale circulation patterns and the complex geography of the state result in 11 regional modes of climate variability within the state. A comparison between the station and gridded analyses reveals that finescale spatial resolution is needed to adequately capture regional modes in complex orographic and coastal settings. Objectively identified regions can be employed not only in tracking regional climate signatures, but also in improving the understanding of mechanisms behind regional climate variability and climate change. The analysis has been incorporated into an operational tool called the California Climate Tracker.

Full access
Linnea M. Avallone, A. Gannet Hallar, Heather Thiry, and Laura M. Edwards
Full access
Daniel J. McEvoy, Justin L. Huntington, John T. Abatzoglou, and Laura M. Edwards

Abstract

Nevada and eastern California are home to some of the driest and warmest climates, most mountainous regions, and fastest growing metropolitan areas of the United States. Throughout Nevada and eastern California, snow-dominated watersheds provide most of the water supply for both human and environmental demands. Increasing demands on finite water supplies have resulted in the need to better monitor drought and its associated hydrologic and agricultural impacts. Two multiscalar drought indices, the standardized precipitation index (SPI) and the standardized precipitation evapotranspiration index (SPEI), are evaluated over Nevada and eastern California regions of the Great Basin using standardized streamflow, lake, and reservoir water surface stages to quantify wet and dry periods. Results show that both metrics are significantly correlated to surface water availability, with SPEI showing slightly higher correlations over SPI, suggesting that the inclusion of a simple term for atmospheric demand in SPEI is useful for characterizing hydrologic drought in arid regions. These results also highlight the utility of multiscalar drought indices as a proxy for summer groundwater discharge and baseflow periods.

Full access