Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Laura M. Judd x
  • Refine by Access: All Content x
Clear All Modify Search
Michael P. Jensen, James H. Flynn, Laura M. Judd, Pavlos Kollias, Chongai Kuang, Greg Mcfarquhar, Raj Nadkarni, Heath Powers, and John Sullivan
Full access
John T. Sullivan, Timothy Berkoff, Guillaume Gronoff, Travis Knepp, Margaret Pippin, Danette Allen, Laurence Twigg, Robert Swap, Maria Tzortziou, Anne M. Thompson, Ryan M. Stauffer, Glenn M. Wolfe, James Flynn, Sally E. Pusede, Laura M. Judd, William Moore, Barry D. Baker, Jay Al-Saadi, and Thomas J. McGee

Abstract

Coastal regions have historically represented a significant challenge for air quality investigations because of water–land boundary transition characteristics and a paucity of measurements available over water. Prior studies have identified the formation of high levels of ozone over water bodies, such as the Chesapeake Bay, that can potentially recirculate back over land to significantly impact populated areas. Earth-observing satellites and forecast models face challenges in capturing the coastal transition zone where small-scale meteorological dynamics are complex and large changes in pollutants can occur on very short spatial and temporal scales. An observation strategy is presented to synchronously measure pollutants “over land” and “over water” to provide a more complete picture of chemical gradients across coastal boundaries for both the needs of state and local environmental management and new remote sensing platforms. Intensive vertical profile information from ozone lidar systems and ozonesondes, obtained at two main sites, one over land and the other over water, are complemented by remote sensing and in situ observations of air quality from ground-based, airborne (both personned and unpersonned), and shipborne platforms. These observations, coupled with reliable chemical transport simulations, such as the National Oceanic and Atmospheric Administration (NOAA) National Air Quality Forecast Capability (NAQFC), are expected to lead to a more fully characterized and complete land–water interaction observing system that can be used to assess future geostationary air quality instruments, such as the National Aeronautics and Space Administration (NASA) Tropospheric Emissions: Monitoring of Pollution (TEMPO), and current low-Earth-orbiting satellites, such as the European Space Agency’s Sentinel-5 Precursor (S5-P) with its Tropospheric Monitoring Instrument (TROPOMI).

Open access
Charles O. Stanier, R. Bradley Pierce, Maryam Abdi-Oskouei, Zachariah E. Adelman, Jay Al-Saadi, Hariprasad D. Alwe, Timothy H. Bertram, Gregory R. Carmichael, Megan B. Christiansen, Patricia A. Cleary, Alan C. Czarnetzki, Angela F. Dickens, Marta A. Fuoco, Dagen D. Hughes, Joseph P. Hupy, Scott J. Janz, Laura M. Judd, Donna Kenski, Matthew G. Kowalewski, Russell W. Long, Dylan B. Millet, Gordon Novak, Behrooz Roozitalab, Stephanie L. Shaw, Elizabeth A. Stone, James Szykman, Lukas Valin, Michael Vermeuel, Timothy J. Wagner, Andrew R. Whitehill, and David J. Williams

Abstract

The Lake Michigan Ozone Study 2017 (LMOS 2017) was a collaborative multiagency field study targeting ozone chemistry, meteorology, and air quality observations in the southern Lake Michigan area. The primary objective of LMOS 2017 was to provide measurements to improve air quality modeling of the complex meteorological and chemical environment in the region. LMOS 2017 science questions included spatiotemporal assessment of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOC) emission sources and their influence on ozone episodes; the role of lake breezes; contribution of new remote sensing tools such as GeoTASO, Pandora, and TEMPO to air quality management; and evaluation of photochemical grid models. The observing strategy included GeoTASO on board the NASA UC-12 aircraft capturing NO2 and formaldehyde columns, an in situ profiling aircraft, two ground-based coastal enhanced monitoring locations, continuous NO2 columns from coastal Pandora instruments, and an instrumented research vessel. Local photochemical ozone production was observed on 2 June, 9–12 June, and 14–16 June, providing insights on the processes relevant to state and federal air quality management. The LMOS 2017 aircraft mapped significant spatial and temporal variation of NO2 emissions as well as polluted layers with rapid ozone formation occurring in a shallow layer near the Lake Michigan surface. Meteorological characteristics of the lake breeze were observed in detail and measurements of ozone, NOx, nitric acid, hydrogen peroxide, VOC, oxygenated VOC (OVOC), and fine particulate matter (PM2.5) composition were conducted. This article summarizes the study design, directs readers to the campaign data repository, and presents a summary of findings.

Full access
Charles O. Stanier, R. Bradley Pierce, Maryam Abdi-Oskouei, Zachariah E. Adelman, Jay Al-Saadi, Hariprasad D. Alwe, Timothy H. Bertram, Gregory R. Carmichael, Megan B. Christiansen, Patricia A. Cleary, Alan C. Czarnetzki, Angela F. Dickens, Marta A. Fuoco, Dagen D. Hughes, Joseph P. Hupy, Scott J. Janz, Laura M. Judd, Donna Kenski, Matthew G. Kowalewski, Russell W. Long, Dylan B. Millet, Gordon Novak, Behrooz Roozitalab, Stephanie L. Shaw, Elizabeth A. Stone, James Szykman, Lukas Valin, Michael Vermeuel, Timothy J. Wagner, Andrew R. Whitehill, and David J. Williams

Abstract

The Lake Michigan Ozone Study 2017 (LMOS 2017) was a collaborative multi-agency field study targeting ozone chemistry, meteorology, and air quality observations in the southern Lake Michigan area. The primary objective of LMOS 2017 was to provide measurements to improve air quality modeling of the complex meteorological and chemical environment in the region. LMOS 2017 science questions included spatiotemporal assessment of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOC) emission sources and their influence on ozone episodes, the role of lake breezes, contribution of new remote sensing tools such as GeoTASO, Pandora, and TEMPO to air quality management, and evaluation of photochemical grid models. The observing strategy included GeoTASO on board the NASA UC-12 capturing NO2 and formaldehyde columns, an in situ profiling aircraft, two ground-based coastal enhanced monitoring locations, continuous NO2 columns from coastal Pandora instruments, and an instrumented research vessel. Local photochemical ozone production was observed on 2 June, 9–12 June, and 14–16 June, providing insights on the processes relevant to state and federal air quality management. The LMOS 2017 aircraft mapped significant spatial and temporal variation of NO2 emissions as well as polluted layers with rapid ozone formation occurring in a shallow layer near the Lake Michigan surface. Meteorological characteristics of the lake breeze were observed in detail and measurements of ozone, NOx, nitric acid, hydrogen peroxide, VOC, oxygenated VOC (OVOC), and fine particulate matter (PM2.5) composition were conducted. This article summarizes the study design, directs readers to the campaign data repository, and presents a summary of findings.

Full access