Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Laurent Bopp x
  • All content x
Clear All Modify Search
Roland Séférian, Daniele Iudicone, Laurent Bopp, Tilla Roy, and Gurvan Madec

Abstract

Impacts of climate change on air–sea CO2 exchange are strongly region dependent, particularly in the Southern Ocean. Yet, in the Southern Ocean the role of water masses in the uptake of anthropogenic carbon is still debated. Here, a methodology is applied that tracks the carbon flux of each Southern Ocean water mass in response to climate change. A global marine biogeochemical model was coupled to a climate model, making 140-yr Coupled Model Intercomparison Project phase 5 (CMIP5)-type simulations, where atmospheric CO2 increased by 1% yr−1 to 4 times the preindustrial concentration (4 × CO2). Impacts of atmospheric CO2 (carbon-induced sensitivity) and climate change (climate-induced sensitivity) on the water mass carbon fluxes have been isolated performing two sensitivity simulations. In the first simulation, the atmospheric CO2 influences solely the marine carbon cycle, while in the second simulation, it influences both the marine carbon cycle and earth’s climate. At 4 × CO2, the cumulative carbon uptake by the Southern Ocean reaches 278 PgC, 53% of which is taken up by modal and intermediate water masses. The carbon-induced and climate-induced sensitivities vary significantly between the water masses. The carbon-induced sensitivities enhance the carbon uptake of the water masses, particularly for the denser classes. But, enhancement strongly depends on the water mass structure. The climate-induced sensitivities either strengthen or weaken the carbon uptake and are influenced by local processes through changes in CO2 solubility and stratification, and by large-scale changes in outcrop surface (OS) areas. Changes in OS areas account for 45% of the climate-induced reduction in the Southern Ocean carbon uptake and are a key factor in understanding the future carbon uptake of the Southern Ocean.

Full access
Richard G. Williams, Vassil Roussenov, Philip Goodwin, Laure Resplandy, and Laurent Bopp

Abstract

Climate projections reveal global-mean surface warming increasing nearly linearly with cumulative carbon emissions. The sensitivity of surface warming to carbon emissions is interpreted in terms of a product of three terms: the dependence of surface warming on radiative forcing, the fractional radiative forcing from CO2, and the dependence of radiative forcing from CO2 on carbon emissions. Mechanistically each term varies, respectively, with climate sensitivity and ocean heat uptake, radiative forcing contributions, and ocean and terrestrial carbon uptake. The sensitivity of surface warming to fossil-fuel carbon emissions is examined using an ensemble of Earth system models, forced either by an annual increase in atmospheric CO2 or by RCPs until year 2100. The sensitivity of surface warming to carbon emissions is controlled by a temporal decrease in the dependence of radiative forcing from CO2 on carbon emissions, which is partly offset by a temporal increase in the dependence of surface warming on radiative forcing. The decrease in the dependence of radiative forcing from CO2 is due to a decline in the ratio of the global ocean carbon undersaturation to carbon emissions, while the increase in the dependence of surface warming is due to a decline in the ratio of ocean heat uptake to radiative forcing. At the present time, there are large intermodel differences in the sensitivity in surface warming to carbon emissions, which are mainly due to uncertainties in the climate sensitivity and ocean heat uptake. These uncertainties undermine the ability to predict how much carbon may be emitted before reaching a warming target.

Open access
Tilla Roy, Laurent Bopp, Marion Gehlen, Birgit Schneider, Patricia Cadule, Thomas L. Frölicher, Joachim Segschneider, Jerry Tjiputra, Christoph Heinze, and Fortunat Joos
Full access
Tilla Roy, Laurent Bopp, Marion Gehlen, Birgit Schneider, Patricia Cadule, Thomas L. Frölicher, Joachim Segschneider, Jerry Tjiputra, Christoph Heinze, and Fortunat Joos

Abstract

The increase in atmospheric CO2 over this century depends on the evolution of the oceanic air–sea CO2 uptake, which will be driven by the combined response to rising atmospheric CO2 itself and climate change. Here, the future oceanic CO2 uptake is simulated using an ensemble of coupled climate–carbon cycle models. The models are driven by CO2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010–2100) oceanic CO2 uptake into a CO2-induced component, due to rising atmospheric CO2 concentrations, and a climate-induced component, due to global warming. The models capture the observation-based magnitude and distribution of anthropogenic CO2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO2 uptake in the subpolar Southern Ocean and the equatorial regions, owing to decreased CO2 solubility; and reduced CO2 uptake in the midlatitudes, owing to decreased CO2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extratropics, to large freshwater fluxes in the extratropical North Atlantic Ocean, and to small changes in the CO2 solubility in the equatorial regions. In key anthropogenic CO2 uptake regions, the climate-induced component offsets the CO2-induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extratropics and 25% in the southern extratropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO2 uptake may be difficult without monitoring additional tracers, such as oxygen.

Full access
Jörg Schwinger, Jerry F. Tjiputra, Christoph Heinze, Laurent Bopp, James R. Christian, Marion Gehlen, Tatiana Ilyina, Chris D. Jones, David Salas-Mélia, Joachim Segschneider, Roland Séférian, and Ian Totterdell

Abstract

Carbon cycle feedbacks are usually categorized into carbon–concentration and carbon–climate feedbacks, which arise owing to increasing atmospheric CO2 concentration and changing physical climate. Both feedbacks are often assumed to operate independently: that is, the total feedback can be expressed as the sum of two independent carbon fluxes that are functions of atmospheric CO2 and climate change, respectively. For phase 5 of the Coupled Model Intercomparison Project (CMIP5), radiatively and biogeochemically coupled simulations have been undertaken to better understand carbon cycle feedback processes. Results show that the sum of total ocean carbon uptake in the radiatively and biogeochemically coupled experiments is consistently larger by 19–58 petagrams of carbon (Pg C) than the uptake found in the fully coupled model runs. This nonlinearity is small compared to the total ocean carbon uptake (533–676 Pg C), but it is of the same order as the carbon–climate feedback. The weakening of ocean circulation and mixing with climate change makes the largest contribution to the nonlinear carbon cycle response since carbon transport to depth is suppressed in the fully relative to the biogeochemically coupled simulations, while the radiatively coupled experiment mainly measures the loss of near-surface carbon owing to warming of the ocean. Sea ice retreat and seawater carbon chemistry contribute less to the simulated nonlinearity. The authors’ results indicate that estimates of the ocean carbon–climate feedback derived from “warming only” (radiatively coupled) simulations may underestimate the reduction of ocean carbon uptake in a warm climate high CO2 world.

Full access
Chris Jones, Eddy Robertson, Vivek Arora, Pierre Friedlingstein, Elena Shevliakova, Laurent Bopp, Victor Brovkin, Tomohiro Hajima, Etsushi Kato, Michio Kawamiya, Spencer Liddicoat, Keith Lindsay, Christian H. Reick, Caroline Roelandt, Joachim Segschneider, and Jerry Tjiputra

Abstract

The carbon cycle is a crucial Earth system component affecting climate and atmospheric composition. The response of natural carbon uptake to CO2 and climate change will determine anthropogenic emissions compatible with a target CO2 pathway. For phase 5 of the Coupled Model Intercomparison Project (CMIP5), four future representative concentration pathways (RCPs) have been generated by integrated assessment models (IAMs) and used as scenarios by state-of-the-art climate models, enabling quantification of compatible carbon emissions for the four scenarios by complex, process-based models. Here, the authors present results from 15 such Earth system GCMs for future changes in land and ocean carbon storage and the implications for anthropogenic emissions. The results are consistent with the underlying scenarios but show substantial model spread. Uncertainty in land carbon uptake due to differences among models is comparable with the spread across scenarios. Model estimates of historical fossil-fuel emissions agree well with reconstructions, and future projections for representative concentration pathway 2.6 (RCP2.6) and RCP4.5 are consistent with the IAMs. For high-end scenarios (RCP6.0 and RCP8.5), GCMs simulate smaller compatible emissions than the IAMs, indicating a larger climate–carbon cycle feedback in the GCMs in these scenarios. For the RCP2.6 mitigation scenario, an average reduction of 50% in emissions by 2050 from 1990 levels is required but with very large model spread (14%–96%). The models also disagree on both the requirement for sustained negative emissions to achieve the RCP2.6 CO2 concentration and the success of this scenario to restrict global warming below 2°C. All models agree that the future airborne fraction depends strongly on the emissions profile with higher airborne fraction for higher emissions scenarios.

Full access
Vivek K. Arora, George J. Boer, Pierre Friedlingstein, Michael Eby, Chris D. Jones, James R. Christian, Gordon Bonan, Laurent Bopp, Victor Brovkin, Patricia Cadule, Tomohiro Hajima, Tatiana Ilyina, Keith Lindsay, Jerry F. Tjiputra, and Tongwen Wu

Abstract

The magnitude and evolution of parameters that characterize feedbacks in the coupled carbon–climate system are compared across nine Earth system models (ESMs). The analysis is based on results from biogeochemically, radiatively, and fully coupled simulations in which CO2 increases at a rate of 1% yr−1. These simulations are part of phase 5 of the Coupled Model Intercomparison Project (CMIP5). The CO2 fluxes between the atmosphere and underlying land and ocean respond to changes in atmospheric CO2 concentration and to changes in temperature and other climate variables. The carbon–concentration and carbon–climate feedback parameters characterize the response of the CO2 flux between the atmosphere and the underlying surface to these changes. Feedback parameters are calculated using two different approaches. The two approaches are equivalent and either may be used to calculate the contribution of the feedback terms to diagnosed cumulative emissions. The contribution of carbon–concentration feedback to diagnosed cumulative emissions that are consistent with the 1% increasing CO2 concentration scenario is about 4.5 times larger than the carbon–climate feedback. Differences in the modeled responses of the carbon budget to changes in CO2 and temperature are seen to be 3–4 times larger for the land components compared to the ocean components of participating models. The feedback parameters depend on the state of the system as well the forcing scenario but nevertheless provide insight into the behavior of the coupled carbon–climate system and a useful common framework for comparing models.

Full access