Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Lesley Smith x
  • Refine by Access: All Content x
Clear All Modify Search
Kevin E. Trenberth
and
Lesley Smith

Abstract

Two rather different flavors of El Niño are revealed when the full three-dimensional spatial structure of the temperature field and atmospheric circulation monthly mean anomalies is analyzed using the Japanese Reanalysis (JRA-25) temperatures from 1979 through 2004 for a core region of the tropics from 30°N to 30°S, with results projected globally onto various other fields. The first two empirical orthogonal functions (EOFs) both have primary relationships to El Niño–Southern Oscillation (ENSO) but feature rather different vertical and spatial structures. By construction the two patterns are orthogonal, but their signatures in sea level pressure, precipitation, outgoing longwave radiation (OLR), and tropospheric diabatic heating are quite similar. Moreover, they are significantly related, with EOF-2 leading EOF-1 by about 4–6 months, indicating that they play complementary roles in the evolution of ENSO events, and with each mode playing greater or lesser roles in different events and seasons.

The dominant pattern (EOF-1) in its positive sign features highly coherent zonal mean warming throughout the tropical troposphere from 30°N to 30°S that increases in magnitude with height to 200 hPa, drops to zero about 100 hPa at the tropopause, and has reverse sign to 30 hPa with peak values at 70 hPa. It correlates strongly with global mean surface temperatures. EOF-2 emphasizes off-equatorial centers of action and strong Rossby wave temperature signatures that are coherent throughout the troposphere, with the strongest values in the Pacific that extend into the extratropics and a sign reversal at and above 150 hPa. Near the surface, both patterns feature boomerang-shaped opposite temperatures in the western tropical and subtropical Pacific, with similar sea level pressure patterns, but with EOF-1 more focused in equatorial regions. Both patterns are strongest during the boreal winter half-year when anomalous precipitation in the tropics and associated latent heating drive teleconnections throughout the world. For El Niño in northern winter EOF-1 has more precipitation in the eastern tropical Pacific, while EOF-2 has much drier conditions over northern Australia and the Indian Ocean. In northern summer, the main differences are in the South Pacific and Indian Ocean. Differences in teleconnections suggest great sensitivity to small changes in forcings in association with seasonal variations in the mean state.

Full access
Kevin E. Trenberth
and
Lesley Smith

Abstract

To explore the vertical coherence of the vertical temperature structure in the atmosphere, an analysis is performed of the full three-dimensional spatial structure of the temperature field monthly mean anomalies from the 40-yr ECMWF Re-Analysis (ERA-40) for a core region of the Tropics from 30°N to 30°S, with results projected globally. The focus is on the first three empirical orthogonal functions (EOFs), two of which have primary relationships to El Niño–Southern Oscillation (ENSO) and feature rather different vertical structures. The second (EOF-2) also has a weak ENSO signature but a very complex vertical structure and reflects mainly nonlinear trends, some real but also some in large part spurious and associated with problems in assimilating satellite data. The dominant pattern (EOF-1) in its positive sign features highly coherent zonal mean warming throughout the tropical troposphere from 30°N to 30°S that increases in magnitude with height to 300 hPa, drops to zero about 100 hPa at the tropopause, and has reverse sign to 30 hPa with peak negative values at 70 hPa. Spatially at low levels it shows warmth throughout most of the Tropics although with weak or slightly opposite sign in the western tropical Pacific and a strong reversed sign in the Pacific subtropics. Coherent wave structures below 700 hPa at higher latitudes cancel out in the zonal mean. However, the structure becomes more zonal above about 700 hPa and features off-equatorial maxima straddling the equator in the eastern Pacific in the upper troposphere with opposite sign at 100 hPa, as a signature of a forced Rossby wave. The corresponding sea level pressure pattern is similar to but more focused in equatorial regions than the Southern Oscillation pattern. The time series highlights the 1997/98 El Niño along with those in 1982/83 and 1986/87, and the 1988/89 La Niña, and correlates strongly with global mean surface temperatures. Missing, however, is the prolonged sequence of three successive El Niño events in the early 1990s, which are highlighted in EOF-3 as part of a mainly lower-frequency decadal variation that features modest zonal mean warming below 700 hPa, cooling from 700 to 300 hPa, and warming above 300 hPa, peaking at 100 hPa and extending from 40°N to 50°S. Spatially at the surface this pattern is dominated by Southern Oscillation wave-1 structures throughout the Tropics and especially the subtropics. The regional temperature structures are coherent throughout the troposphere, with strongest values in the Pacific and extending well into the extratropics, with a sign reversal at and above 100 hPa. Strong Rossby wave signatures are featured in the troposphere with a distinctive quadrupole pattern that reverses at 100 hPa. The vertical coherence of all patterns suggests that they should be apparent in broad-layer satellite temperature records but that stratospheric anomalies are not independent. The quite different three-dimensional structure of these different patterns highlights the need to consider the full structure outside of the Pacific and at all vertical levels in accounting for impacts of ENSO, and how they relate to the global mean.

Full access
Kevin E. Trenberth
and
Lesley Smith

Abstract

The total mass of the atmosphere varies mainly from changes in water vapor loading; the former is proportional to global mean surface pressure and the water vapor component is computed directly from specific humidity and precipitable water using the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analyses (ERA-40). Their difference, the mass of the dry atmosphere, is estimated to be constant for the equivalent surface pressure to within 0.01 hPa based on changes in atmospheric composition. Global reanalyses satisfy this constraint for monthly means for 1979–2001 with a standard deviation of 0.065 hPa. New estimates of the total mass of the atmosphere and its dry component, and their corresponding surface pressures, are larger than previous estimates owing to new topography of the earth’s surface that is 5.5 m lower for the global mean. Global mean total surface pressure is 985.50 hPa, 0.9 hPa higher than previous best estimates. The total mean mass of the atmosphere is 5.1480 × 1018 kg with an annual range due to water vapor of 1.2 or 1.5 × 1015 kg depending on whether surface pressure or water vapor data are used; this is somewhat smaller than the previous estimate. The mean mass of water vapor is estimated as 1.27 × 1016 kg and the dry air mass as 5.1352 ± 0.0003 × 1018 kg. The water vapor contribution varies with an annual cycle of 0.29-hPa, a maximum in July of 2.62 hPa, and a minimum in December of 2.33 hPa, although the total global surface pressure has a slightly smaller range. During the 1982/83 and 1997/98 El Niño events, water vapor amounts and thus total mass increased by about 0.1 hPa in surface pressure or 0.5 × 1015 kg for several months. Some evidence exists for slight decreases following the Mount Pinatubo eruption in 1991 and also for upward trends associated with increasing global mean temperatures, but uncertainties due to the changing observing system compromise the evidence.

The physical constraint of conservation of dry air mass is violated in the reanalyses with increasing magnitude prior to the assimilation of satellite data in both ERA-40 and the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalyses. The problem areas are shown to occur especially over the Southern Oceans. Substantial spurious changes are also found in surface pressures due to water vapor, especially in the Tropics and subtropics prior to 1979.

Full access
Linyin Cheng
,
Martin Hoerling
,
Lesley Smith
, and
Jon Eischeid

Abstract

Factors responsible for extreme monthly rainfall over Texas and Oklahoma during May 2015 are assessed. The event had a return period of at least 400 years, in contrast to the prior record, which was roughly a 100-yr event. The event challenges attribution science to disentangle factors because it occurred during a strong El Niño, a natural pattern of variability that affects the region’s springtime rains, and during the warmest global mean temperatures since 1880. Effects of each factor are diagnosed, as is the interplay between El Niño dynamics and human-induced climate change.

Analysis of historical climate simulations reveals that El Niño was a necessary condition for monthly rains to occur having the severity of May 2015. The model results herein further reveal that a 2015 magnitude event, whether conditioned on El Niño or not, was made neither more intense nor more likely to be due to human-induced climate change over the past century.

The intensity of extreme May rainfall over Texas and Oklahoma , analogous to the 2015 event, increases by roughly 5% by the latter half of the twenty-first century. No material changes occur in either El Niño–related teleconnections or in overall atmospheric dynamics during extreme May rainfall over the twenty-first century. The increased severity of Texas/Oklahoma May rainfall events in the future is principally due to thermodynamic driving, although much less than implied by simple Clausius–Clapeyron scaling arguments given a projected 23% increase in atmospheric precipitable water vapor. Other thermodynamic factors are identified that act in opposition to the increase in atmospheric water vapor, thereby reducing the effectiveness of overall thermodynamic driving of extreme May rainfall changes over Texas and Oklahoma.

Full access
Kevin E. Trenberth
,
Lesley Smith
,
Taotao Qian
,
Aiguo Dai
, and
John Fasullo

Abstract

A brief review is given of research in the Climate Analysis Section at NCAR on the water cycle. Results are used to provide a new estimate of the global hydrological cycle for long-term annual means that includes estimates of the main reservoirs of water as well as the flows of water among them. For precipitation P over land a comparison among three datasets enables uncertainties to be estimated. In addition, results are presented for the mean annual cycle of the atmospheric hydrological cycle based on 1979–2000 data. These include monthly estimates of P, evapotranspiration E, atmospheric moisture convergence over land, and changes in atmospheric storage, for the major continental landmasses, zonal means over land, hemispheric land means, and global land means. The evapotranspiration is computed from the Community Land Model run with realistic atmospheric forcings, including precipitation that is constrained by observations for monthly means but with high-frequency information taken from atmospheric reanalyses. Results for EP are contrasted with those from atmospheric moisture budgets based on 40-yr ECMWF Re-Analysis (ERA-40) data. The latter show physically unrealistic results, because evaporation often exceeds precipitation over land, especially in the Tropics and subtropics.

Full access
Kevin E. Trenberth
,
David P. Stepaniak
, and
Lesley Smith

Abstract

Using the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) for 1958 to 2001, adjusted for bias over the southern oceans prior to 1979, an analysis is made of global patterns of monthly mean anomalies of atmospheric mass, which is approximately conserved globally. It differs from previous analyses of atmospheric circulation by effectively area weighting surface or sea level pressure that diminishes the role of high latitudes. To examine whether global patterns of behavior exist requires analysis of all seasons together (as opposite seasons occur in each hemisphere). Empirical orthogonal function (EOF) analysis, R-mode varimax-rotated EOF analysis, and cyclostationary EOF (CSEOF) analysis tools are used to explore patterns and variability on interannual and longer time scales. Clarification is given of varimax terminology and procedures that have been previously misinterpreted. The dominant global monthly variability overall is associated with the Southern Hemisphere annular mode (SAM), which is active in all months of the year. However, it is not very coherent from month to month and exhibits a great deal of natural unforced variability. The third most important pattern is the Northern Hemisphere annular mode (NAM) and associated North Atlantic Oscillation (NAO), which is the equivalent Northern Hemisphere expression. Neither of these is really a global mode, although they covary on long time scales in association with tropical or external forcing. For monthly data, the second mode is coherent with Niño-3.4 sea surface temperatures and thus corresponds to El Niño–Southern Oscillation (ENSO), which is truly global in extent. It exhibits more coherent evolution with time and projects strongest onto the interannual variability, where it stands out by far as the dominant mode in the CSEOF analysis. The CSEOF analysis extracts the patterns phase locked with annual cycle and reveals their evolution throughout the year. Standard EOF and varimax analyses are not able to evolve with time of year unless the analysis is stratified by season. Varimax analysis is able to extract the SAM, NAM, and ENSO modes very well, however.

Full access
Anne K. Smith
,
Lesley J. Gray
, and
Rolando R. Garcia

Abstract

The semiannual oscillation (SAO) in zonally averaged zonal winds develops just above the quasi-biennial oscillation (QBO) and dominates the seasonal variability in the tropical upper stratosphere and lower mesosphere. The magnitude, seasonality, and latitudinal structure of the SAO vary with the phase of the QBO. There is also an annual oscillation (AO) whose magnitude at the equator is smaller than those of the SAO and QBO but not negligible. This work presents the relation between the SAO, QBO, AO, and time-mean wind in the tropical upper stratosphere and lower mesosphere using winds derived from satellite geopotential height observations. The winds are generally more westerly during the easterly phase of the QBO. The SAO extends to lower altitudes during periods where the QBO is characterized by deep easterly winds. The differences in the SAO associated with the QBO are roughly confined to the latitudes where the QBO has appreciable amplitude, suggesting that the mechanism is controlled by vertical coupling. The westerly phases of the SAO and AO show downward propagation with time. This analysis suggests that forcing by dissipation of waves with westerly momentum is responsible for the westerly acceleration of both the SAO and AO. The timing and structure of the easterly phases of the SAO and AO near the stratopause are consistent with the response to meridional advection of momentum across the equator during solstices; it is not apparent that local wave processes play important roles in the easterly phases in the region of the stratopause.

Restricted access
Thomas M. Hamill
,
Diana R. Stovern
, and
Lesley L. Smith

Abstract

This article describes proposed revised methods for the statistical postprocessing of precipitation amount intended for the NOAA’s National Blend of Models using the Global Ensemble Forecast System version 12 data (GEFSv12). The procedure updates the previously established procedure of quantile mapping, weighting of sorted members, and dressing of the ensemble. The revised method leverages the long reforecast training dataset that has become available to improve quantile mapping of GEFSv12 data by eliminating the use of supplemental locations, that is, training data from other grid points. It establishes improved definitions of cumulative distributions through a spline-fitting approach. It provides updated algorithms for the weighting of sorted members based on closest-member histogram statistics, and it establishes an objective method for the dressing of the quantile-mapped, weighted ensemble. Verification statistics and case studies are provided in the accompanying article (Part II).

Restricted access
Diana R. Stovern
,
Thomas M. Hamill
, and
Lesley L. Smith

Abstract

This second part of the series presents results from verifying a precipitation forecast calibration method discussed in the first part, based on quantile mapping (QM), weighting of sorted members, and dressing of the ensemble. NOAA’s Global Ensemble Forecast System, version 12 (GEFSv12), reforecasts were used in this study. The method was validated with preoperational GEFSv12 forecasts from December 2017 to November 2019. The method is proposed as an enhancement for GEFSv12 precipitation postprocessing in NOAA’s National Blend of Models. The first part described adaptations to the methodology to leverage the ∼20-yr GEFSv12 reforecast data. As shown here in this part, when compared with probabilistic quantitative precipitation forecasts from the raw ensemble, the adapted method produced downscaled, high-resolution forecasts that were significantly more reliable and skillful than raw ensemble-derived probabilities, especially at shorter lead times (i.e., <5 days) and for forecasts of events from light precipitation to >10 mm (6 h)−1. Cool-season events in the western United States were especially improved when the QM algorithm was applied, providing a statistical downscaling with realistic smaller-scale detail related to terrain features. The method provided less value added for forecasts of longer lead times and for the heaviest precipitation.

Restricted access
Martin Hoerling
,
Lesley Smith
,
Xiao-Wei Quan
,
Jon Eischeid
,
Joseph Barsugli
, and
Henry F. Diaz

Abstract

Observed United States trends in the annual maximum 1-day precipitation (RX1day) over the last century consist of 15%–25% increases over the eastern United States (East) and 10% decreases over the far western United States (West). This heterogeneous trend pattern departs from comparatively uniform observed increases in precipitable water over the contiguous United States. Here we use an event attribution framework involving parallel sets of global atmospheric model experiments with and without climate change drivers to explain this spatially diverse pattern of extreme daily precipitation trends. We find that RX1day events in our model ensembles respond to observed historical climate change forcing differently across the United States with 5%–10% intensity increases over the East but no appreciable change over the West. This spatially diverse forced signal is broadly similar among three models used, and is positively correlated with the observed trend pattern. Our analysis of model and observations indicates the lack of appreciable RX1day signals over the West is likely due to dynamical effects of climate change forcing—via a wintertime atmospheric circulation anomaly that suppresses vertical motion over the West—largely cancelling thermodynamic effects of increased water vapor availability. The large magnitude of eastern U.S. RX1day increases is unlikely a symptom of a regional heightened sensitivity to climate change forcing. Instead, our ensemble simulations reveal considerable variability in RX1day trend magnitudes arising from internal atmospheric processes alone, and we argue that the remarkable observed increases over the East has most likely resulted from a superposition of strong internal variability with a moderate climate change signal. Implications for future changes in U.S. extreme daily precipitation are discussed.

Full access