Search Results
You are looking at 1 - 10 of 373 items for
- Author or Editor: Li Zhang x
- Refine by Access: All Content x
Abstract
Observational analysis indicates that the East Asian jet stream consists of two separate branches: the East Asian subtropical jet (EASJ) and the East Asian polar front jet (EAPJ). The impacts of different intensity configurations of the EASJ and EAPJ on precipitation during the mei-yu season are investigated using the NCEP–NCAR Reanalysis Project (NNRP) dataset and daily gauge observations in East China. The intensity and location of precipitation are associated with different configurations of the EASJ and EAPJ. Precipitation intensity increases with intensification of the EASJ and EAPJ. The rainband is located to the north of the mei-yu region when the EASJ intensifies and the EAPJ weakens. Further analyses indicate that the intensity changes of the EASJ and EAPJ are linked to the cold and warm airmass activities. For cases with strong EASJ and EAPJ, both the warm-moist and cold air masses are active. When the warm-moist and cold air masses meet near 30°N, abundant precipitation occurs in the Yangtze-Huai River basin (YHRB). For cases with weak EASJ and EAPJ, both the cold and warm-moist air masses are inactive, and no significant precipitation occurs in the YHRB. For cases with strong EASJ and weak EAPJ, the warm-moist air mass moves northward while the cold air mass is weak. Precipitation concentrates to the north of YHRB. For cases with weak EASJ and strong EAPJ, cold air extends farther south while the warm-moist air mass is inactive. Precipitation occurs to the south of YHRB.
Abstract
Observational analysis indicates that the East Asian jet stream consists of two separate branches: the East Asian subtropical jet (EASJ) and the East Asian polar front jet (EAPJ). The impacts of different intensity configurations of the EASJ and EAPJ on precipitation during the mei-yu season are investigated using the NCEP–NCAR Reanalysis Project (NNRP) dataset and daily gauge observations in East China. The intensity and location of precipitation are associated with different configurations of the EASJ and EAPJ. Precipitation intensity increases with intensification of the EASJ and EAPJ. The rainband is located to the north of the mei-yu region when the EASJ intensifies and the EAPJ weakens. Further analyses indicate that the intensity changes of the EASJ and EAPJ are linked to the cold and warm airmass activities. For cases with strong EASJ and EAPJ, both the warm-moist and cold air masses are active. When the warm-moist and cold air masses meet near 30°N, abundant precipitation occurs in the Yangtze-Huai River basin (YHRB). For cases with weak EASJ and EAPJ, both the cold and warm-moist air masses are inactive, and no significant precipitation occurs in the YHRB. For cases with strong EASJ and weak EAPJ, the warm-moist air mass moves northward while the cold air mass is weak. Precipitation concentrates to the north of YHRB. For cases with weak EASJ and strong EAPJ, cold air extends farther south while the warm-moist air mass is inactive. Precipitation occurs to the south of YHRB.
Abstract
In this study, downscaling, ensemble data assimilation, time lagging, and their combination were used to generate initial condition (IC) perturbations for 12-h convection-permitting ensemble forecasting for heavy-rainfall events over South China during the rainy season in 2013–20. These events were classified as weak- and strong-forcing cases based on synoptic-scale forcing during the presummer rainy season and as landfalling tropical cyclone (TC) cases. This study investigated the impacts of various IC perturbation methods on multiscale characteristics of perturbations and the forecast performance for both nonprecipitation and precipitation variables. These perturbation methods represented different source IC uncertainties and thus differed in multiscale characteristics of perturbations in vertical structures, horizontal distributions, and time evolution. The combination of various IC perturbation methods evidently increased perturbations or spreads of precipitation in both magnitude and location and thus improved the forecast-error estimation. Such an improvement was most and least evident for TC cases during the early and late forecasts, respectively, and was more evident for strong- than weak-forcing cases beyond 6 h. The combination of various IC perturbation methods generally improved both the ensemble-mean and probabilistic forecasts with case-dependent improvements. For heavy rainfall forecasting, 1–6-h improvements were most prominent for TC cases in terms of discrimination and accuracy, while 7–12-h improvements were least prominent for weak-forcing cases in terms of reliability and accuracy. In particular, the improvements in predicting weak-forcing cases increased with spatial errors. In contrast, for strong-forcing cases, the improvements were least and most prominent before and beyond 6 h, respectively.
Significance Statement
Precipitation forecasting for heavy-rainfall events over South China in the rainy season is still challenging due to large uncertainties. Convection-permitting ensemble forecasting is expected to address such uncertainties to improve forecasts of heavy rainfall. However, it is not yet clear how to optimally design convection-permitting ensembles by implementing perturbations in initial conditions (ICs). This study investigates the impacts of various IC perturbation methods on convection-permitting ensemble forecasting over South China in the rainy season. Various IC perturbation methods show discrepant multiscale characteristics of perturbations, which generally complement each other when these perturbations are combined. The added values of combining various IC perturbation methods in forecasting are confirmed for most variables. However, such values are case dependent, with the largest values for tropical cyclone cases during the early forecasts and for the presummer rainy season cases with strong synoptic-scale forcing during late forecasts. Thus, it is still essential to further improve the combination of various types of IC perturbation methods.
Abstract
In this study, downscaling, ensemble data assimilation, time lagging, and their combination were used to generate initial condition (IC) perturbations for 12-h convection-permitting ensemble forecasting for heavy-rainfall events over South China during the rainy season in 2013–20. These events were classified as weak- and strong-forcing cases based on synoptic-scale forcing during the presummer rainy season and as landfalling tropical cyclone (TC) cases. This study investigated the impacts of various IC perturbation methods on multiscale characteristics of perturbations and the forecast performance for both nonprecipitation and precipitation variables. These perturbation methods represented different source IC uncertainties and thus differed in multiscale characteristics of perturbations in vertical structures, horizontal distributions, and time evolution. The combination of various IC perturbation methods evidently increased perturbations or spreads of precipitation in both magnitude and location and thus improved the forecast-error estimation. Such an improvement was most and least evident for TC cases during the early and late forecasts, respectively, and was more evident for strong- than weak-forcing cases beyond 6 h. The combination of various IC perturbation methods generally improved both the ensemble-mean and probabilistic forecasts with case-dependent improvements. For heavy rainfall forecasting, 1–6-h improvements were most prominent for TC cases in terms of discrimination and accuracy, while 7–12-h improvements were least prominent for weak-forcing cases in terms of reliability and accuracy. In particular, the improvements in predicting weak-forcing cases increased with spatial errors. In contrast, for strong-forcing cases, the improvements were least and most prominent before and beyond 6 h, respectively.
Significance Statement
Precipitation forecasting for heavy-rainfall events over South China in the rainy season is still challenging due to large uncertainties. Convection-permitting ensemble forecasting is expected to address such uncertainties to improve forecasts of heavy rainfall. However, it is not yet clear how to optimally design convection-permitting ensembles by implementing perturbations in initial conditions (ICs). This study investigates the impacts of various IC perturbation methods on convection-permitting ensemble forecasting over South China in the rainy season. Various IC perturbation methods show discrepant multiscale characteristics of perturbations, which generally complement each other when these perturbations are combined. The added values of combining various IC perturbation methods in forecasting are confirmed for most variables. However, such values are case dependent, with the largest values for tropical cyclone cases during the early forecasts and for the presummer rainy season cases with strong synoptic-scale forcing during late forecasts. Thus, it is still essential to further improve the combination of various types of IC perturbation methods.
Abstract
Though the single-layer solutions have been found for the δ-four-stream spherical harmonic expansion method (SHM) in radiative transfer, there is lack of a corresponding doubling–adding method (4SDA), which enables the calculation of radiative transfer through a vertically inhomogeneous atmosphere with multilayers. The doubling–adding method is based on Chandrasekhar's invariance principle, which was originally developed for discrete ordinates approximation. It is shown that the invariance principle can also be applied to SHM and δ-four-stream spherical harmonic expansion doubling–adding method (δ-4SDA) is proposed in this paper. The δ-4SDA method has been systematically compared to the δ-Eddington doubling–adding method (δ-2SDA), the δ-two-stream discrete ordinates doubling–adding method (δ-2DDA), and δ-four-stream discrete ordinates doubling–adding method (δ-4DDA). By applying δ-4SDA to a realistic atmospheric profile with gaseous transmission considered, it is found that the accuracy of δ-4SDA is superior to δ-2SDA or δ-2DDA, especially for the cloudy/aerosol conditions. It is shown that the relative errors of δ-4SDA are generally less than 1% in both heating rate and flux, while the relative errors of both δ-2SDA and δ-2DDA can be over 6%. Though δ-4DDA is slightly more accurate than δ-4SDA in heating rates, both of them are accurate enough to obtain the cloud-top solar heating. Here δ-4SDA is superior to δ-4DDA in computational efficiency. It is found that the error of aerosol radiative forcing can be up to 3 W m−2 by using δ-2SDA at the top of the atmosphere (TOA); such error is substantially reduced by applying δ-4SDA. In view of the overall accuracy and computational efficiency, δ-4SDA is suitable for application in climate models.
Abstract
Though the single-layer solutions have been found for the δ-four-stream spherical harmonic expansion method (SHM) in radiative transfer, there is lack of a corresponding doubling–adding method (4SDA), which enables the calculation of radiative transfer through a vertically inhomogeneous atmosphere with multilayers. The doubling–adding method is based on Chandrasekhar's invariance principle, which was originally developed for discrete ordinates approximation. It is shown that the invariance principle can also be applied to SHM and δ-four-stream spherical harmonic expansion doubling–adding method (δ-4SDA) is proposed in this paper. The δ-4SDA method has been systematically compared to the δ-Eddington doubling–adding method (δ-2SDA), the δ-two-stream discrete ordinates doubling–adding method (δ-2DDA), and δ-four-stream discrete ordinates doubling–adding method (δ-4DDA). By applying δ-4SDA to a realistic atmospheric profile with gaseous transmission considered, it is found that the accuracy of δ-4SDA is superior to δ-2SDA or δ-2DDA, especially for the cloudy/aerosol conditions. It is shown that the relative errors of δ-4SDA are generally less than 1% in both heating rate and flux, while the relative errors of both δ-2SDA and δ-2DDA can be over 6%. Though δ-4DDA is slightly more accurate than δ-4SDA in heating rates, both of them are accurate enough to obtain the cloud-top solar heating. Here δ-4SDA is superior to δ-4DDA in computational efficiency. It is found that the error of aerosol radiative forcing can be up to 3 W m−2 by using δ-2SDA at the top of the atmosphere (TOA); such error is substantially reduced by applying δ-4SDA. In view of the overall accuracy and computational efficiency, δ-4SDA is suitable for application in climate models.
Abstract
The green vegetation fraction Fg, which represents the horizontal density of live vegetation, is an important parameter for the study of global energy, carbon, hydrological, and biogeochemical cycling. A common method of calculating Fg is to create a simple linear mixing model between two NDVI endmembers: bare soil NDVI,
Abstract
The green vegetation fraction Fg, which represents the horizontal density of live vegetation, is an important parameter for the study of global energy, carbon, hydrological, and biogeochemical cycling. A common method of calculating Fg is to create a simple linear mixing model between two NDVI endmembers: bare soil NDVI,
Abstract
Cumulus (Cu) can transport heat and water vapor from the boundary layer to the free atmosphere, leading to the redistribution of heat and moist energy in the lower atmosphere. This paper uses the fine-resolution CloudSat–CALIPSO product to characterize Cu over the Tibetan Plateau (TP). It is found that Cu is one of the dominant cloud types over the TP in the northern summer. The Cu event frequency, defined as Cu occurring within 50-km segments, is 54% over the TP in the summer, which is much larger over the TP than in its surrounding regions. The surface wind vector converging at the central TP and the topographic forcing provide the necessary moisture and dynamical lifting of convection over the TP. The structure of the atmospheric moist static energy shows that the thermodynamical environment over the northern TP can be characterized as having weak instability, a shallow layer of instability, and lower altitudes for the level of free convection. The diurnal variation of Cu with frequency peaks during the daytime confirms the surface thermodynamic control on Cu formation over the TP. This study offers insights into how surface heat is transported to the free troposphere over the TP and provides an observational test of climate models in simulating shallow convection over the TP.
Abstract
Cumulus (Cu) can transport heat and water vapor from the boundary layer to the free atmosphere, leading to the redistribution of heat and moist energy in the lower atmosphere. This paper uses the fine-resolution CloudSat–CALIPSO product to characterize Cu over the Tibetan Plateau (TP). It is found that Cu is one of the dominant cloud types over the TP in the northern summer. The Cu event frequency, defined as Cu occurring within 50-km segments, is 54% over the TP in the summer, which is much larger over the TP than in its surrounding regions. The surface wind vector converging at the central TP and the topographic forcing provide the necessary moisture and dynamical lifting of convection over the TP. The structure of the atmospheric moist static energy shows that the thermodynamical environment over the northern TP can be characterized as having weak instability, a shallow layer of instability, and lower altitudes for the level of free convection. The diurnal variation of Cu with frequency peaks during the daytime confirms the surface thermodynamic control on Cu formation over the TP. This study offers insights into how surface heat is transported to the free troposphere over the TP and provides an observational test of climate models in simulating shallow convection over the TP.
Abstract
How sea surface temperature (SST) changes under global warming is critical for future climate projection because SST change affects atmospheric circulation and rainfall. Robust features derived from 17 models of phase 5 of the Coupled Model Intercomparison Project (CMIP5) include a much greater warming in high latitudes than in the tropics, an El Niño–like warming over the tropical Pacific and Atlantic, and a dipole pattern in the Indian Ocean. However, the physical mechanism responsible for formation of such warming patterns remains open.
A simple theoretical model is constructed to reveal the cause of the future warming patterns. The result shows that a much greater polar, rather than tropical, warming depends primarily on present-day mean SST and surface latent heat flux fields, and atmospheric longwave radiation feedback associated with cloud change further enhances this warming contrast. In the tropics, an El Niño–like warming over the Pacific and Atlantic arises from a similar process, while cloud feedback resulting from different cloud regimes between east and west ocean basins also plays a role. A dipole warming over the equatorial Indian Ocean is a response to weakened Walker circulation in the tropical Pacific.
Abstract
How sea surface temperature (SST) changes under global warming is critical for future climate projection because SST change affects atmospheric circulation and rainfall. Robust features derived from 17 models of phase 5 of the Coupled Model Intercomparison Project (CMIP5) include a much greater warming in high latitudes than in the tropics, an El Niño–like warming over the tropical Pacific and Atlantic, and a dipole pattern in the Indian Ocean. However, the physical mechanism responsible for formation of such warming patterns remains open.
A simple theoretical model is constructed to reveal the cause of the future warming patterns. The result shows that a much greater polar, rather than tropical, warming depends primarily on present-day mean SST and surface latent heat flux fields, and atmospheric longwave radiation feedback associated with cloud change further enhances this warming contrast. In the tropics, an El Niño–like warming over the Pacific and Atlantic arises from a similar process, while cloud feedback resulting from different cloud regimes between east and west ocean basins also plays a role. A dipole warming over the equatorial Indian Ocean is a response to weakened Walker circulation in the tropical Pacific.
Abstract
Cumulus (Cu) from shallow convection is one of the dominant cloud types over the Tibetan Plateau (TP) in the summer according to CloudSat–CALIPSO observations. Its thermodynamic effects on the atmospheric environment and impacts on the large-scale atmospheric circulation are studied in this paper using the Community Atmospheric Model, version 5.3 (CAM5.3). It is found that the model can reasonably simulate the unique distribution of diabatic heating and Cu over the TP. Shallow convection provides the dominant diabatic heating and drying to the lower and middle atmosphere over the TP. A sensitivity experiment indicates that without Cu over the TP, large-scale condensation and stratiform clouds would increase dramatically, which induces enhanced low-level wind and moisture convergence toward the TP, resulting in significantly enhanced monsoon circulation with remote impact on the areas far beyond the TP. Cu therefore acts as a safety valve to modulate the atmospheric environment that prevents the formation of superclusters of stratiform clouds and precipitation over the TP.
Abstract
Cumulus (Cu) from shallow convection is one of the dominant cloud types over the Tibetan Plateau (TP) in the summer according to CloudSat–CALIPSO observations. Its thermodynamic effects on the atmospheric environment and impacts on the large-scale atmospheric circulation are studied in this paper using the Community Atmospheric Model, version 5.3 (CAM5.3). It is found that the model can reasonably simulate the unique distribution of diabatic heating and Cu over the TP. Shallow convection provides the dominant diabatic heating and drying to the lower and middle atmosphere over the TP. A sensitivity experiment indicates that without Cu over the TP, large-scale condensation and stratiform clouds would increase dramatically, which induces enhanced low-level wind and moisture convergence toward the TP, resulting in significantly enhanced monsoon circulation with remote impact on the areas far beyond the TP. Cu therefore acts as a safety valve to modulate the atmospheric environment that prevents the formation of superclusters of stratiform clouds and precipitation over the TP.
Abstract
Based on observational data analyses and idealized modeling experiments, we investigated the distinctive impacts of central Pacific (CP) El Niño and eastern Pacific (EP) El Niño on the Antarctic sea ice concentration (SIC) in austral spring (September–November). The tropical heat sources associated with EP El Niño and the co-occurring positive phase of the Indian Ocean dipole (IOD) excite two branches of Rossby wave trains that propagate southeastward, causing an anomalous anticyclone over the eastern Ross–Amundsen–Bellingshausen Seas. Anomalous northerly (southerly) wind to the west (east) of the anomalous anticyclone favors poleward (offshore) movements of sea ice, resulting in a sea ice loss (growth) in the eastern Ross–Amundsen Seas (the Bellingshausen–Weddell Seas). Meanwhile, the anomalous northerly (southerly) wind also advects warmer and wetter (colder and drier) air into the eastern Ross–Amundsen Seas (the Bellingshausen–Weddell Seas), causing surface warming (cooling) through the enhanced (reduced) surface heat fluxes and thus contributing to the sea ice melting (growth). CP El Niño, however, forces a Rossby wave train that generates an anomalous anticyclone in the eastern Ross–Amundsen Seas, 20° west of that caused by EP El Niño. Consequently, a positive SIC anomaly occurs in the Bellingshausen Sea. A dry version of the Princeton atmospheric general circulation model was applied to verify the roles of anomalous heating in the tropics. The result showed that EP El Niño can remotely induce an anomalous anticyclone and associated dipole temperature pattern in the Antarctic region, whereas CP El Niño generates a similar anticyclone pattern with its location shift westward by 20° in longitudes.
Abstract
Based on observational data analyses and idealized modeling experiments, we investigated the distinctive impacts of central Pacific (CP) El Niño and eastern Pacific (EP) El Niño on the Antarctic sea ice concentration (SIC) in austral spring (September–November). The tropical heat sources associated with EP El Niño and the co-occurring positive phase of the Indian Ocean dipole (IOD) excite two branches of Rossby wave trains that propagate southeastward, causing an anomalous anticyclone over the eastern Ross–Amundsen–Bellingshausen Seas. Anomalous northerly (southerly) wind to the west (east) of the anomalous anticyclone favors poleward (offshore) movements of sea ice, resulting in a sea ice loss (growth) in the eastern Ross–Amundsen Seas (the Bellingshausen–Weddell Seas). Meanwhile, the anomalous northerly (southerly) wind also advects warmer and wetter (colder and drier) air into the eastern Ross–Amundsen Seas (the Bellingshausen–Weddell Seas), causing surface warming (cooling) through the enhanced (reduced) surface heat fluxes and thus contributing to the sea ice melting (growth). CP El Niño, however, forces a Rossby wave train that generates an anomalous anticyclone in the eastern Ross–Amundsen Seas, 20° west of that caused by EP El Niño. Consequently, a positive SIC anomaly occurs in the Bellingshausen Sea. A dry version of the Princeton atmospheric general circulation model was applied to verify the roles of anomalous heating in the tropics. The result showed that EP El Niño can remotely induce an anomalous anticyclone and associated dipole temperature pattern in the Antarctic region, whereas CP El Niño generates a similar anticyclone pattern with its location shift westward by 20° in longitudes.
Abstract
Fine-scale characteristics of summer precipitation over Cang Mountain, a long and narrow mountain with a quasi-north–south orientation in Southwest China, are studied using station and radar data. Three kinds of rainfall processes are classified according to the initial stations of regional rainfall events (RREs) by utilizing minute-scale rain gauge data. RREs initiating in the western part of Cang Mountain exhibit eastward evolution and tend to reach their maximum rainfall intensity on the mountaintop. The results indicate differences in the precipitation evolution characteristics between short-duration (1–3 h) and long-duration (at least 6 h) events. Short-duration events begin farther from the mountaintop and then propagate eastward, whereas long-duration events remain longer around the mountaintop. RREs that initiate from the eastern part of Cang Mountain display westward propagation and frequently reach their maximum rainfall intensity over the eastern slope of the mountain. Among them, short-duration events tend to propagate farther west of Cang Mountain at high speeds, but the westward evolution of long-duration events is mainly confined to the eastern part of Cang Mountain. For mountaintop-originated RREs, precipitation quickly reaches its maximum intensity after it starts and then continues for a long time around the mountaintop during the period from late afternoon to early morning. These findings provide references for the fine-scale prediction of precipitation evolution in small-scale mountainous areas.
Abstract
Fine-scale characteristics of summer precipitation over Cang Mountain, a long and narrow mountain with a quasi-north–south orientation in Southwest China, are studied using station and radar data. Three kinds of rainfall processes are classified according to the initial stations of regional rainfall events (RREs) by utilizing minute-scale rain gauge data. RREs initiating in the western part of Cang Mountain exhibit eastward evolution and tend to reach their maximum rainfall intensity on the mountaintop. The results indicate differences in the precipitation evolution characteristics between short-duration (1–3 h) and long-duration (at least 6 h) events. Short-duration events begin farther from the mountaintop and then propagate eastward, whereas long-duration events remain longer around the mountaintop. RREs that initiate from the eastern part of Cang Mountain display westward propagation and frequently reach their maximum rainfall intensity over the eastern slope of the mountain. Among them, short-duration events tend to propagate farther west of Cang Mountain at high speeds, but the westward evolution of long-duration events is mainly confined to the eastern part of Cang Mountain. For mountaintop-originated RREs, precipitation quickly reaches its maximum intensity after it starts and then continues for a long time around the mountaintop during the period from late afternoon to early morning. These findings provide references for the fine-scale prediction of precipitation evolution in small-scale mountainous areas.
Abstract
Based on a comprehensive collection of hail observations and the NCEP–NCAR reanalyses from 1960 to 2012, the long-term trends of hail day frequency in mainland China and the associated changes in atmospheric circulation patterns were analyzed. There was no detectable trend in hail frequency from 1960 to the early 1980s, but a significant decreasing trend was apparent in later periods throughout most of China and in particular over the Tibetan Plateau from the early 1980s and over northern and northwestern China from the early 1990s. Hail frequency in southern China did not decrease as significantly as in other regions over the last couple of decades. An objective classification method, the obliquely rotated T-mode principal component technique, was used to investigate atmospheric circulation patterns. It was found that 51.85% of the hail days occurred during two major circulation types, both of which were associated with cold frontal systems in northern China. More specifically, the synoptic trough in East Asia, signified by the meridional circulation at 850 hPa, became considerably weaker after 1990. This change in the synoptic pattern is consistent with a weakening trend in the East Asian summer monsoon, the primary dynamic forcing of moisture transport that contributes to the generation of severe convection in northern China. The long-term variability of hail day frequency over the Tibetan Plateau was more strongly correlated with the change in mean freezing-level height (FLH) than the strength of the East Asian monsoon.
Abstract
Based on a comprehensive collection of hail observations and the NCEP–NCAR reanalyses from 1960 to 2012, the long-term trends of hail day frequency in mainland China and the associated changes in atmospheric circulation patterns were analyzed. There was no detectable trend in hail frequency from 1960 to the early 1980s, but a significant decreasing trend was apparent in later periods throughout most of China and in particular over the Tibetan Plateau from the early 1980s and over northern and northwestern China from the early 1990s. Hail frequency in southern China did not decrease as significantly as in other regions over the last couple of decades. An objective classification method, the obliquely rotated T-mode principal component technique, was used to investigate atmospheric circulation patterns. It was found that 51.85% of the hail days occurred during two major circulation types, both of which were associated with cold frontal systems in northern China. More specifically, the synoptic trough in East Asia, signified by the meridional circulation at 850 hPa, became considerably weaker after 1990. This change in the synoptic pattern is consistent with a weakening trend in the East Asian summer monsoon, the primary dynamic forcing of moisture transport that contributes to the generation of severe convection in northern China. The long-term variability of hail day frequency over the Tibetan Plateau was more strongly correlated with the change in mean freezing-level height (FLH) than the strength of the East Asian monsoon.