Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Lian Shen x
  • All content x
Clear All Modify Search
Shi Liu, Song Yang, Yi Lian, Dawei Zheng, Min Wen, Gang Tu, Baizhu Shen, Zongting Gao, and Donghai Wang

Abstract

The time–frequency characteristics of the variations of temperature and precipitation over the city of Changchun in northeast China and their associations with large-scale atmospheric and oceanic conditions are analyzed. It is found that the variations of the regional climate are characterized by strong semiannual signals. For precipitation, the amplitude of semiannual signal is about half of that of the annual cycle. The relationships of the Changchun temperature and precipitation with local winds and large-scale patterns of atmospheric circulation and sea surface temperature are also strongest on annual and semiannual time scales. These strong semiannual signals are potentially helpful for improving the prediction of the regional climate.

On the annual time scale, the northeast China climate is affected by both the thermal contrast between the Asian continent and the tropical Indo-Pacific Oceans and that between the continent and the extratropical North Pacific. These effects are manifested by the cyclonic (anticyclonic) pattern over the Asian continent (North Pacific) and the strong southerly flow over East Asia and northwestern Pacific associated with increases in temperature and precipitation. On the semiannual time scale, the northeast China climate is mainly related to the large-scale circulation pattern centered over the North Pacific, with its western portion over northeast China, North and South Korea, and Japan. While temperature signals are related to extratropical atmospheric process more apparently, both extratropical and tropical influences are seen in the semiannual variation of precipitation.

There exist strong relationships between Changchun temperature and precipitation and the North Pacific Oscillation (NPO) in the frequency band up to 7 months. Temperature increases and precipitation decreases when NPO is positive. The relationships were weak before 1980 but became stronger afterward, associated with the strengthening of the East Asian trough.

Full access
James Edson, Timothy Crawford, Jerry Crescenti, Tom Farrar, Nelson Frew, Greg Gerbi, Costas Helmis, Tihomir Hristov, Djamal Khelif, Andrew Jessup, Haf Jonsson, Ming Li, Larry Mahrt, Wade McGillis, Albert Plueddemann, Lian Shen, Eric Skyllingstad, Tim Stanton, Peter Sullivan, Jielun Sun, John Trowbridge, Dean Vickers, Shouping Wang, Qing Wang, Robert Weller, John Wilkin, Albert J. Williams III, D. K. P. Yue, and Chris Zappa

The Office of Naval Research's Coupled Boundary Layers and Air–Sea Transfer (CBLAST) program is being conducted to investigate the processes that couple the marine boundary layers and govern the exchange of heat, mass, and momentum across the air–sea interface. CBLAST-LOW was designed to investigate these processes at the low-wind extreme where the processes are often driven or strongly modulated by buoyant forcing. The focus was on conditions ranging from negligible wind stress, where buoyant forcing dominates, up to wind speeds where wave breaking and Langmuir circulations play a significant role in the exchange processes. The field program provided observations from a suite of platforms deployed in the coastal ocean south of Martha's Vineyard. Highlights from the measurement campaigns include direct measurement of the momentum and heat fluxes on both sides of the air–sea interface using a specially constructed Air–Sea Interaction Tower (ASIT), and quantification of regional oceanic variability over scales of O(1–104 mm) using a mesoscale mooring array, aircraft-borne remote sensors, drifters, and ship surveys. To our knowledge, the former represents the first successful attempt to directly and simultaneously measure the heat and momentum exchange on both sides of the air–sea interface. The latter provided a 3D picture of the oceanic boundary layer during the month-long main experiment. These observations have been combined with numerical models and direct numerical and large-eddy simulations to investigate the processes that couple the atmosphere and ocean under these conditions. For example, the oceanic measurements have been used in the Regional Ocean Modeling System (ROMS) to investigate the 3D evolution of regional ocean thermal stratification. The ultimate goal of these investigations is to incorporate improved parameterizations of these processes in coupled models such as the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) to improve marine forecasts of wind, waves, and currents.

Full access
Qing Wang, Denny P. Alappattu, Stephanie Billingsley, Byron Blomquist, Robert J. Burkholder, Adam J. Christman, Edward D. Creegan, Tony de Paolo, Daniel P. Eleuterio, Harindra Joseph S. Fernando, Kyle B. Franklin, Andrey A. Grachev, Tracy Haack, Thomas R. Hanley, Christopher M. Hocut, Teddy R. Holt, Kate Horgan, Haflidi H. Jonsson, Robert A. Hale, John A. Kalogiros, Djamal Khelif, Laura S. Leo, Richard J. Lind, Iossif Lozovatsky, Jesus Planella-Morato, Swagato Mukherjee, Wendell A. Nuss, Jonathan Pozderac, L. Ted Rogers, Ivan Savelyev, Dana K. Savidge, R. Kipp Shearman, Lian Shen, Eric Terrill, A. Marcela Ulate, Qi Wang, R. Travis Wendt, Russell Wiss, Roy K. Woods, Luyao Xu, Ryan T. Yamaguchi, and Caglar Yardim

Abstract

The Coupled Air–Sea Processes and Electromagnetic Ducting Research (CASPER) project aims to better quantify atmospheric effects on the propagation of radar and communication signals in the marine environment. Such effects are associated with vertical gradients of temperature and water vapor in the marine atmospheric surface layer (MASL) and in the capping inversion of the marine atmospheric boundary layer (MABL), as well as the horizontal variations of these vertical gradients. CASPER field measurements emphasized simultaneous characterization of electromagnetic (EM) wave propagation, the propagation environment, and the physical processes that gave rise to the measured refractivity conditions. CASPER modeling efforts utilized state-of-the-art large-eddy simulations (LESs) with a dynamically coupled MASL and phase-resolved ocean surface waves. CASPER-East was the first of two planned field campaigns, conducted in October and November 2015 offshore of Duck, North Carolina. This article highlights the scientific motivations and objectives of CASPER and provides an overview of the CASPER-East field campaign. The CASPER-East sampling strategy enabled us to obtain EM wave propagation loss as well as concurrent environmental refractive conditions along the propagation path. This article highlights the initial results from this sampling strategy showing the range-dependent propagation loss, the atmospheric and upper-oceanic variability along the propagation range, and the MASL thermodynamic profiles measured during CASPER-East.

Open access