Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Lianchun Song x
  • Refine by Access: All Content x
Clear All Modify Search
Yujie Wang, Lianchun Song, Chris Hewitt, Nicola Golding, and Zili Huang

Abstract

The primary needs for climate services in China, in the form of climate information for decision-making, are to better prepare for and manage meteorological-related disasters, adaptation to climate change, and sustainable development. In this paper, the vision, structure, content, and governance of the China Framework for Climate Services, which is designed to respond to these primary needs, is described. This paper reflects on practice, lessons, and experience developing and delivering climate services in China for disaster risk reduction, agriculture, water, energy, urbanization, and major engineering projects. Four key aspects of successful climate services are highlighted: the transition of climate research to operational climate services; delivering relevant, tailored, and usable climate information; effective engagement between users and providers of climate services; and building interdisciplinary professional teams. Key challenges and opportunities for climate services are recognized in this paper: a growing gap between climate science and services capability and societal need, a lack of awareness in user communities of the climate service value for their activities, and the important need for closer and more meaningful interactions between users and providers of climate services. The delivery and uptake of high-quality, relevant, usable, and effective climate services will facilitate climate-smart decisions that will reduce climate risks and improve Chinese societal resilience.

Open access
Lianchun Song, Siyan Dong, Ying Sun, Guoyu Ren, Botao Zhou, and Peter A. Stott
Full access
Ying Sun, Lianchun Song, Hong Yin, Botao Zhou, Ting Hu, Xuebin Zhang, and Peter Stott
Full access
Botao Zhou, Qiuzi Han Wen, Ying Xu, Lianchun Song, and Xuebin Zhang

Abstract

This paper presents projected changes in temperature and precipitation extremes in China by the end of the twenty-first century based on the Coupled Model Intercomparison Project phase 5 (CMIP5) simulations. The temporal changes and their spatial patterns in the Expert Team on Climate Change Detection and Indices (ETCCDI) indices under the RCP4.5 and RCP8.5 emission scenarios are analyzed. Compared to the reference period 1986–2005, substantial changes are projected in temperature and precipitation extremes under both emission scenarios. These changes include a decrease in cold extremes, an increase in warm extremes, and an intensification of precipitation extremes. The intermodel spread in the projection increases with time, with wider spread under RCP8.5 than RCP4.5 for most indices, especially at the subregional scale. The difference in the projected changes under the two RCPs begins to emerge in the 2040s. Analyses based on the mixed-effects analysis of variance (ANOVA) model indicate that by the end of the twenty-first century, at the national scale, the dominant contributor to the projection uncertainty of most temperature-based indices, and some precipitation extremes [including maximum 1-day precipitation (RX1day) and maximum 5-day precipitation (RX5day), and total extremely wet day total amount (R95p)], is the difference in emission scenarios. By the end of the twenty-first century, model uncertainty is the dominant factor at the regional scale and for the other indices. Natural variability can also play very important role.

Full access
Adam A. Scaife, Elizabeth Good, Ying Sun, Zhongwei Yan, Nick Dunstone, Hong-Li Ren, Chaofan Li, Riyu Lu, Peili Wu, Zongjian Ke, Zhuguo Ma, Kalli Furtado, Tongwen Wu, Tianjun Zhou, Tyrone Dunbar, Chris Hewitt, Nicola Golding, Peiqun Zhang, Rob Allan, Kirstine Dale, Fraser C. Lott, Peter A. Stott, Sean Milton, Lianchun Song, and Stephen Belcher

Abstract

We present results from the first 6 years of this major UK government funded project to accelerate and enhance collaborative research and development in climate science, forge a strong strategic partnership between UK and Chinese climate scientists and demonstrate new climate services developed in partnership. The development of novel climate services is described in the context of new modelling and prediction capability, enhanced understanding of climate variability and change, and improved observational datasets. Selected highlights are presented from over three hundred peer reviewed studies generated jointly by UK and Chinese scientists within this project. We illustrate new observational datasets for Asia and enhanced capability through training workshops on the attribution of climate extremes to anthropogenic forcing. Joint studies on the dynamics and predictability of climate have identified new opportunities for skilful predictions of important aspects of Chinese climate such as East Asian Summer Monsoon rainfall. In addition, the development of improved modelling capability has led to profound changes in model computer codes and climate model configurations, with demonstrable increases in performance. We also describe the successes and difficulties in bridging the gap between fundamental climate research and the development of novel real time climate services. Participation of dozens of institutes through sub-projects in this programme, which is governed by the Met Office Hadley Centre, the China Meteorological Administration and the Institute of Atmospheric Physics, is creating an important legacy for future collaboration in climate science and services.

Full access
Peter W. Thorne, Kate M. Willett, Rob J. Allan, Stephan Bojinski, John R. Christy, Nigel Fox, Simon Gilbert, Ian Jolliffe, John J. Kennedy, Elizabeth Kent, Albert Klein Tank, Jay Lawrimore, David E. Parker, Nick Rayner, Adrian Simmons, Lianchun Song, Peter A. Stott, and Blair Trewin

No abstract available.

Full access