Search Results

You are looking at 1 - 10 of 26 items for

  • Author or Editor: Liang Wu x
  • All content x
Clear All Modify Search
Jia Liang and Liguang Wu

Abstract

Tropical cyclones (TCs) in the eastern semicircle of large-scale monsoon gyres (MGs) were observed to take either a northward (sudden northward and northward without a sharp turn) or a westward TC turn, but only the northward turn was previously simulated in a barotropic model. To understand what controls TC track types in MGs, idealized numerical experiments are performed using the full-physics Weather Research and Forecasting (WRF) Model. These experiments indicate that TCs initially located in the eastern semicircle of MGs can generally take three types of tracks: a sudden northward track, a westward track, and a northward track without a sharp turn. The track types depend upon the TC movement relative to the MG center.

In agreement with barotropic simulations, the WRF simulation confirms that approaching and being collocated with the MG center is crucial to the occurrence of sudden northward TC track changes and that sudden northward track changes can be generally accounted for by changes in the steering flow. TCs that take westward tracks and northward tracks without a sharp turn do not experience such a coalescence process. Westward TCs move faster than MGs and are then located to the west of the MG center, while TCs move more slowly than MGs and then take a northward track without a sharp turn. This study reveals that the specific TC track in the eastern semicircle of an MG is sensitive to the initial wind profiles of both MGs and TCs, suggesting that improvement in the observation of TC and MG structures is very important for predicting TC track types in MGs.

Full access
Liguang Wu, Jia Liang, and Chun-Chieh Wu

Abstract

Typhoon Morakot made landfall on Taiwan with a record rainfall of 3031.5 mm during 6–13 August 2009. While previous studies have emphasized the influence of southwesterly winds associated with intraseasonal oscillations and monsoon surges on moisture supply, the interaction between Morakot and low-frequency monsoon flows and the resulting influence on the slow movement and asymmetric precipitation structure of the typhoon were examined observationally.

Embedded in multi-time-scale monsoonal flows, Morakot generally moved westward prior to its landfall on Taiwan and underwent a coalescence process first with a cyclonic gyre on the quasi-biweekly oscillation time scale and then with a cyclonic gyre on the Madden–Julian oscillation time scale. The coalescence enhanced the synoptic-scale southwesterly winds of Morakot and thus decreased its westward movement and turned the track northward, leading to an unusually long residence time in the vicinity of Taiwan. The resulting slow movement and collocation with the low-frequency gyres also maintained the major rainfall in southern Taiwan because the low-frequency flows played an important role in enhancing the winds on the southern side, especially during 6–9 August 2009. In addition to the lifting effect of the Taiwan terrain and the moisture supply associated with monsoon flows, the study suggests that the monsoonal influence maintained the major rainfall area in southern Taiwan through reducing the translation speed, shifting Morakot northward, and enhancing the low-frequency flows on the southern side of the typhoon. Since the enhanced low-frequency flows did not shift northward with the movement of Morakot, its primary rainfall expanded outward with time as the typhoon center moved northwestward after its landfall on Taiwan.

Full access
Liang Wu, Zhiping Wen, and Renguang Wu

Abstract

The present study investigates the possible linkage between the monsoon trough and the interannual variability of the activity of westward-propagating tropical waves (WTW) over the western North Pacific (WNP) during July–November for the period 1979–2007. It is shown that the interannual variability of WTW activity is closely related to the location of the monsoon trough. During the years when the enhanced (weakened) monsoon trough extends eastward (retreats westward), the lower-tropospheric WTW activity is above (below) normal within the southeastern quadrant of the WNP. Furthermore, this study evaluates different wave structures and dynamics of two types of WTWs, equatorial Rossby (ER) waves and mixed Rossby–gravity (MRG)–tropical depression (TD)-type waves, in strong monsoon trough (S-MT) and weak monsoon trough (W-MT) years over the WNP. There is a significant change in the three-dimensional structure as those waves propagate westward to the east of the monsoon trough. For the TD–MRG waves, an apparent transition from MRG waves to off-equatorial TD disturbances is identified in the region of the monsoon trough. For the ER waves, their amplitudes have a faster growth, but their structures and propagation characters have no marked change. Differences in the location of the monsoon trough may lead to an east–west contrast in the WTWs. In a companion study (Part II), diagnostics of energetics and numerical experiments are conducted to explain the observed results in the present study.

Full access
Liang Wu, Zhiping Wen, and Renguang Wu

Abstract

Part I of this study examined the modulation of the monsoon trough (MT) on tropical depression (TD)-type–mixed Rossby–gravity (MRG) and equatorial Rossby (ER) waves over the western North Pacific based on observations. This part investigates the interaction of these waves with the MT through a diagnostics of energy conversion that separates the effect of the MT on TD–MRG and ER waves. It is found that the barotropic conversion associated with the MT is the most important mechanism for the growth of eddy energy in both TD–MRG and ER waves. The large rotational flows help to maintain the rapid growth and tilted horizontal structure of the lower-tropospheric waves through a positive feedback between the wave growth and horizontal structure. The baroclinic conversion process associated with the MT contributes a smaller part for TD–MRG waves, but is of importance comparable to barotropic conversion for ER waves as it can produce the tilted vertical structure. The growth rates of the waves are much larger during strong MT years than during weak MT years.

Numerical experiments are conducted for an idealized MRG or ER wave using a linear shallow-water model. The results confirm that the monsoon background flow can lead to an MRG-to-TD transition and the ER wave amplifies along the axis of the MT and is more active in the strong MT state. Those results are consistent with the findings in Part I. This indicates that the mean flow of the MT provides a favorable background condition for the development of the waves and acts as a key energy source.

Full access
Xiaoqing Wu and Xin-Zhong Liang

Abstract

The representation of subgrid horizontal and vertical variability of clouds in radiation schemes remains a major challenge for general circulation models (GCMs) due to the lack of cloud-scale observations and incomplete physical understanding. The development of cloud-resolving models (CRMs) in the last decade provides a unique opportunity to make progress in this area of research. This paper extends the study of Wu and Moncrieff to quantify separately the impacts of cloud horizontal inhomogeneity (optical property) and vertical overlap (geometry) on the domain-averaged shortwave and longwave radiative fluxes at the top of the atmosphere and the surface, and the radiative heating profiles. The diagnostic radiation calculations using the monthlong CRM-simulated tropical cloud optical properties and cloud fraction show that both horizontal inhomogeneity and vertical overlap of clouds are equally important for obtaining accurate radiative fluxes and heating rates. This study illustrates an objective approach to use long-term CRM simulations to separate cloud overlap and inhomogeneity effects, based on which GCM representation (such as mosaic treatment) of subgrid cloud–radiation interactions can be evaluated and improved.

Full access
Liguang Wu, Huijun Zong, and Jia Liang

Abstract

An observational analysis of observed sudden typhoon track changes is conducted with a focus on the underlying mechanism and the possible role of slowly varying low-frequency flows. Four typhoons that took a generally northwestward track prior to sharply turning northeastward in the vicinity of the East China Sea are investigated.

It is found that the sudden track changes occurred near the center of the Madden–Julian oscillation (MJO)-scale cyclonic circulation or at the bifurcation point of the steering flows at 700 hPa, and they were all associated with a well-developed quasi-biweekly oscillation (QBW)-scale gyre. Calculation of vorticity advection suggests that the peripheral ridging resulting from the interaction between the typhoons and the flows on the MJO and QBW scales can compress the typhoon circulation, leading to an area of high winds to the east or south of the typhoon center. The enhanced synoptic-scale winds shifted the typhoons northward and placed them in a northeastward orbit under the steering of the flows associated with the Pacific subtropical high. The sudden track change can be likened to the maneuvering of satellite orbit change in that the enhanced synoptic-scale winds act as a booster rocket to shift the typhoons northward to the southwesterly steering flows.

Full access
Xiaoqing Wu, Xin-Zhong Liang, and Sunwook Park

Abstract

This study aims to combine the cloud-resolving model (CRM) simulations with the Department of Energy’s Atmospheric Radiation Measurement Program (ARM) observations to provide long-term comprehensive and physically consistent data that facilitate quantifying the effects of subgrid cloud–radiation interactions and ultimately to develop physically based parameterization of these interactions in general circulation models. The CRM is applied here to simulate the midlatitude cloud systems observed at the ARM southern Great Plains (SGP) site during the 1997 intensive observation period. As in the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE), the CRM-simulated ensemble mean quantities such as cloud liquid water, cloud fraction, precipitation, and radiative fluxes are generally in line with the surface measurements, satellite, and radar retrievals. The CRM differences from the ARM estimates, when averaged over the entire period, are less than 5 W m−2 in both longwave and shortwave radiative fluxes at the top of the atmosphere and surface. Because of the different large-scale forcing and surface heat fluxes in ARM and TOGA COARE, the CRM produces different cloud distributions over the midlatitude continent and tropical ocean. However, diagnostic analyses show that the subgrid cloud variability has similar impact on the domain-averaged radiative fluxes and heating rates in ARM as in TOGA COARE.

Full access
Jia Liang, Liguang Wu, and Guojun Gu

Abstract

As one major source of forecasting errors in tropical cyclone intensity, rapid weakening of tropical cyclones [an intensity reduction of 20 kt (1 kt = 0.51 m s−1) or more over a 24-h period] over the tropical open ocean can result from the interaction between tropical cyclones and monsoon gyres. This study aims to examine rapid weakening events occurring in monsoon gyres in the tropical western North Pacific (WNP) basin during May–October 2000–14.

Although less than one-third of rapid weakening events happened in the tropical WNP basin south of 25°N, more than 40% of them were associated with monsoon gyres. About 85% of rapid weakening events in monsoon gyres occurred in September and October. The rapid weakening events associated with monsoon gyres are usually observed near the center of monsoon gyres when tropical cyclone tracks make a sudden northward turn. The gyres can enlarge the outer size of tropical cyclones and tend to induce prolonged rapid weakening events with an average duration of 33.2 h. Large-scale environmental factors, including sea surface temperature changes, vertical wind shear, and midlevel environmental humidity, are not primary contributors to them, suggesting the possible effect of monsoon gyres on these rapid weakening events by modulating the tropical cyclone structure. This conclusion is conducive to improving operational forecasts of tropical cyclone intensity.

Full access
Liguang Wu, Huijun Zong, and Jia Liang

Abstract

Large-scale monsoon gyres and the involved tropical cyclone formation over the western North Pacific have been documented in previous studies. The aim of this study is to understand how monsoon gyres affect tropical cyclone formation. An observational study is conducted on monsoon gyres during the period 2000–10, with a focus on their structures and the associated tropical cyclone formation.

A total of 37 monsoon gyres are identified in May–October during 2000–10, among which 31 monsoon gyres are accompanied with the formation of 42 tropical cyclones, accounting for 19.8% of the total tropical cyclone formation. Monsoon gyres are generally located on the poleward side of the composited monsoon trough with a peak occurrence in August–October. Extending about 1000 km outward from the center at lower levels, the cyclonic circulation of the composited monsoon gyre shrinks with height and is replaced with negative relative vorticity above 200 hPa. The maximum winds of the composited monsoon gyre appear 500–800 km away from the gyre center with a magnitude of 6–10 m s−1 at 850 hPa. In agreement with previous studies, the composited monsoon gyre shows enhanced southwesterly flow and convection on the south-southeastern side. Most of the tropical cyclones associated with monsoon gyres are found to form near the centers of monsoon gyres and the northeastern end of the enhanced southwesterly flows, accompanying relatively weak vertical wind shear.

Full access
Liguang Wu, Xiaofang Feng, and Mei Liang

Abstract

The South Asia high (SAH) is a prominent circulation system of the Asian summer monsoon, exerting profound influences on the weather and climate in China and surrounding regions. Its formation and maintenance is closely associated with strong summertime continental heating in the form of surface sensible heat flux and the latent heat release in connection with the Asian monsoon. In this study, the possible response of the South Asian high intensity to the thermal condition change in the Tibetan Plateau is examined with four modern reanalysis datasets, including the Modern-Era Retrospective Analysis for Research and Applications (MERRA), MERRA version 2 (MERRA-2), the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim), and the Japanese 55-year Reanalysis (JRA-55). Despite the surface air warming in the four modern reanalysis datasets, reduced surface wind speed in three of the reanalysis datasets, and decreased surface sensible heat flux in the MERRA-2 dataset, there is no statistically significant trend in the SAH intensity over the period 1979–2015. One of the possible reasons is that the response of the upper-level circulation to the thermal condition change of the Tibetan Plateau occurs mainly in the 200-hPa subtropical westerly jet stream, which is located far away from the center of the South Asian high. Thus the South Asian high intensity is not particularly sensitive to the thermal condition change of the Tibetan Plateau, while the center of the South Asian high intensity over the plateau exhibits a northward trend over the period.

Full access