Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Lianhong Gu x
  • All content x
Clear All Modify Search
Benzhi Zhou, Lianhong Gu, Yihui Ding, Lan Shao, Zhongmin Wu, Xiaosheng Yang, Changzhu Li, Zhengcai Li, Xiaoming Wang, Yonghui Cao, Bingshan Zeng, Mukui Yu, Mingyu Wang, Shengkun Wang, Honggang Sun, Aiguo Duan, Yanfei An, Xu Wang, and Weijian Kong


Extreme events often expose vulnerabilities of socioeconomic infrastructures and point to directions of much-needed policy change. Integrated impact assessment of such events can lead to finding of sustainability principles. Southern and central China has for decades been undergoing a breakneck pace of socioeconomic development. In early 2008, a massive ice storm struck this region, immobilizing millions of people. The storm was a consequence of sustained convergence between tropical maritime and continental polar air masses, caused by an anomalously stable atmospheric general circulation pattern in both low and high latitudes. Successive waves of freezing rain occurred during a month period, coating southern and central China with a layer of ice 50–160 mm in thickness. We conducted an integrated impact assessment of this event to determine whether and how the context of socioeconomic and human-disturbed natural systems may affect the transition of natural events into human disasters. We found that 1) without contingency plans, advanced technologies dependent on interrelated energy supplies can create worse problems during extreme events, 2) the weakest link in disaster response lies between science and decision making, 3) biodiversity is a form of long-term insurance for sustainable forestry against extreme events, 4) sustainable extraction of nontimber goods and services is essential to risk planning for extreme events in forest resources use, 5) extreme events can cause food shortage directly by destroying crops and indirectly by disrupting food distribution channels, 6) concentrated economic development increases societal vulnerability to extreme events, and 7) formalized institutional mechanisms are needed to ensure that unexpected opportunities to learn lessons from weather disasters are not lost in distracting circumstances.

Full access
Dennis Baldocchi, Eva Falge, Lianhong Gu, Richard Olson, David Hollinger, Steve Running, Peter Anthoni, Ch. Bernhofer, Kenneth Davis, Robert Evans, Jose Fuentes, Allen Goldstein, Gabriel Katul, Beverly Law, Xuhui Lee, Yadvinder Malhi, Tilden Meyers, William Munger, Walt Oechel, K. T. Paw U, Kim Pilegaard, H. P. Schmid, Riccardo Valentini, Shashi Verma, Timo Vesala, Kell Wilson, and Steve Wofsy

FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S.

FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite.

Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO2 exchange of temperate broadleaved forests increases by about 5.7 g C m−2 day−1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.

Full access