Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Lifeng Zhang x
  • All content x
Clear All Modify Search
Jun Peng, Lifeng Zhang, and Yun Zhang

Abstract

A new derivation of local available energetics for a fully compressible, nonhydrostatic, moist atmosphere is presented. The available energetics is defined relative to an arbitrary dry reference state in hydrostatic balance with stable stratification. By introducing the modified potential temperature, a positive-definite expression of the moist available potential energy (APE) is derived. The change of the moist APE must include the role of convection to function both as a source of latent heat and as an atmosphere dehumidifier. The sum of this moist APE and the available elastic energy (AEE) is the moist available energy. In the local energy cycle, the moist available energy is partly used to generate kinetic energy (KE) and partly used to lift the water vapor to the higher level where it precipitates, resulting in the increase of gravitational energy of moist species. The moist APE is converted into vertical KE through the buoyancy term; the vertical KE is converted into the AEE through the vertical perturbation pressure gradient term; and the AEE is converted into horizontal KE through the horizontal divergence/convergence term. In addition, there exist two adiabatic nonconservative processes, which act on the AEE and APE, respectively. A suitable choice of the reference state should make these two processes much less significant than the conversions between the available energy and KE. An alternative method is presented to construct such a reference state. Application to the idealized baroclinic atmosphere shows that this reference state is much more relevant to the local available energy analysis than the isothermal one.

Full access
Jun Peng, Lifeng Zhang, and Jiping Guan

Abstract

In this second part of a two-part study, a newly developed moist nonhydrostatic formulation of the spectral energy budget of both kinetic energy (KE) and available potential energy (APE) is employed to investigate the dynamics underlying the mesoscale upper-tropospheric energy spectra in idealized moist baroclinic waves. By calculating the conservative nonlinear spectral fluxes, it is shown that the inclusion of moist processes significantly enhances downscale cascades of both horizontal KE and APE. Moist processes act not only as a source of latent heat but also as an “atmospheric dehumidifier.” The latent heating, mainly because of the depositional growth of cloud ice, has a significant positive contribution to mesoscale APE. However, the dehumidifying reduces the diabatic contribution of the latent heating by 15% at all scales. Including moist processes also changes the direction of the mesoscale conversion between APE and horizontal KE and adds a secondary conversion of APE to gravitational energy of moist species. With or without moisture, the vertically propagating inertia–gravity waves (IGWs) produced in the lower troposphere result in a significant positive contribution to the upper-tropospheric horizontal KE spectra at the large-scale end of the mesoscale. However, including moist processes generates additional sources of IGWs located in the upper troposphere; the upward propagation of the convectively generated IGWs removes much of the horizontal KE there. Because of the restriction of the anelastic approximation, the three-dimensional divergence has no significant contribution. In view of conflicting contributions of various direct forcings, finally, an explicit comparison between the net direct forcing and energy cascade is made.

Full access
Jun Peng, Lifeng Zhang, and Jiping Guan

Abstract

The authors investigate the mesoscale dynamics that produce the lower-stratospheric energy spectra in idealized moist baroclinic waves, using the moist nonhydrostatic formulation of spectral energy budget of kinetic energy and available potential energy by J. Peng et al. The inclusion of moist processes energizes the lower-stratospheric mesoscale, helping to close the gap between observed and simulated energy spectra. In dry baroclinic waves, the lower-stratospheric mesoscale is mainly forced by weak downscale cascades of both horizontal kinetic energy (HKE) and available potential energy (APE) and by a weak conversion of APE to HKE. At wavelengths less than 1000 km, the pressure vertical flux divergence also has a significant positive contribution to the HKE; however, this positive contribution is largely counteracted by the negative HKE vertical flux divergence. In moist baroclinic waves, the lower-stratospheric mesoscale HKE is mainly generated by the pressure and HKE vertical flux divergences. This additional HKE is partly converted to APE and partly removed by diffusion. Another negative contribution to the mesoscale HKE is from the forcing of a visible upscale HKE cascade. Besides the conversion of HKE, however, the three-dimensional divergence also has a significant positive contribution to the mesoscale APE. With these two direct APE sources, the lower-stratospheric mesoscale also undergoes a much stronger upscale APE cascade. These results suggest that both downscale and upscale cascades through the mesoscale are permitted in the real atmosphere and the direct forcing of the mesoscale is available to feed the upscale energy cascade.

Full access
Jun Peng, Lifeng Zhang, Yu Luo, and Yun Zhang

Abstract

The mesoscale kinetic energy (KE) spectra of the mei-yu front system are investigated through idealized numerical simulations. In the mature stage, the upper-tropospheric KE spectrum resembles a −3 power law for wavelengths between 1000 and 400 km and shallows to a slope of approximately − at smaller wavelengths. A similar behavior can be observed in the lower stratosphere. At both levels, the rotational KE spectrum shallows nearly to the same extent as the divergent KE spectrum at smaller wavelengths, accounting for the transition in the total KE spectrum. About 12 h after the latent heating is turned off, the mesoscale KE spectra hardly show the distinct spectral transition, especially in the upper troposphere.

The spectral KE budget for various height ranges is analyzed and compared. In the upper troposphere, the mesoscale KE is deposited through the buoyancy flux and removed by the advective nonlinearity and vertical pressure flux divergence. The buoyancy flux spectrum in the mature phase has a peak at scales of around 300 km and a plateau throughout the mesoscale, which suggests a significant injection of KE in the mesoscale. The negative contribution of the advective nonlinearity demonstrates that to some extent the mesoscale KE derives from a nonlinear upscale cascade, with the buoyancy-produced energy source located at the lower end of mesoscale spectrum. In the lower stratosphere, the mesoscale KE is deposited through the advective nonlinearity and vertical pressure flux divergence and removed by the buoyancy flux. This suggests that the lower-stratospheric KE spectrum is influenced by both the downscale energy cascade and vertically propagating IGWs.

Full access
Yuan Wang, Lifeng Zhang, Jun Peng, and Jiping Guan

Abstract

High-resolution cloud-permitting simulations with the Weather Research and Forecasting (WRF) Model are performed to study the generation, structure, and characteristics of mesoscale gravity waves in an idealized mei-yu front system. Two classes of waves are generated successively during the control simulation. The first class of waves, which is typical of vertically propagating waves excited by the front itself, appears as the front develops before the generation of the prefrontal moist convection and has a coherent fanlike pattern from the troposphere to the lower stratosphere. The second class of waves, which is much stronger than the fanlike waves, appears accompanied by the generation of the moist convection. It is nearly vertically trapped in the troposphere, while it propagates vertically upstream and downstream in the lower stratosphere. The source function analysis is introduced to demonstrate that the mechanical oscillator mechanism plays a dominant role in the generation of convective gravity waves in the lower stratosphere. The vertical motion induced by the deep convection develops upward in the troposphere, overshoots the level of neutral buoyancy (LNB), and impinges on the tropopause. The net buoyancy forces the air parcels to oscillate about the LNB, thus initiating gravity waves in the lower stratosphere. Further spectral analysis shows that the upstream waves have more abundant wavenumber–frequency and phase speed space distributions than the downstream waves. And the former amplify with height while the latter weaken in general under the effect of background northerly wind. The power spectral densities of downstream waves concentrate on faster phase speed than those of upstream waves.

Full access
Jun Peng, Lifeng Zhang, Yu Luo, and Chunhui Xiong

Abstract

In Part II of this study, a new formulation of the spectral energy budget of moist available potential energy (MAPE) and kinetic energy is derived. Compared to previous formulations, there are three main improvements: (i) the Lorenz available potential energy is extended into a general moist atmosphere, (ii) the water vapor and hydrometeors are taken into account, and (iii) it is formulated in a nonhydrostatic framework. Using this formulation, the mesoscale MAPE spectra of the idealized mei-yu front system simulated in Part I are further analyzed.

At the mature stage, the MAPE spectra in the upper troposphere and lower stratosphere also show a distinct spectral transition in the mesoscale: they develop an approximately −3 spectral slope for wavelengths longer than 400 km and − spectral slope for shorter wavelengths. In the upper troposphere, mesoscale MAPE is mainly deposited through latent heating and subsequently converted to other forms of energy at the same wavenumber. At wavelengths longer than roughly 400 km, the conversion of MAPE to horizontal kinetic energy (HKE) dominates, while at shorter wavelengths, the mechanical work produced by convective systems primarily adds to the potential energy of moist species and only secondarily generates HKE. However, this secondary conversion is enough to maintain the mesoscale − HKE spectral slope. Another positive contribution comes from the divergence term and the vertical flux. In the lower stratosphere, the main source of mesoscale MAPE is the conversion of HKE, although the vertical flux and the spectral transfer also have notable contributions.

Full access
Quanjia Zhong, Jianping Li, Lifeng Zhang, Ruiqiang Ding, and Baosheng Li

Abstract

The predictability limits of tropical cyclone (TC) intensity over the western North Pacific (WNP) are investigated using TC best track data. The results show that the predictability limit of the TC minimum central pressure (MCP) is ~102 h, comparable to that of the TC maximum sustained wind (MSW). The spatial distribution of the predictability limit of the TC MCP over the WNP is similar to that of the TC MSW, and both gradually decrease from the eastern WNP (EWNP) to the South China Sea (SCS). The predictability limits of the TC MCP and MSW are relatively high over the southeastern WNP where the modified accumulated cyclone energy (MACE) is relatively large, whereas they are relatively low over the SCS where the MACE is relatively small. The spatial patterns of the TC lifetime and the lifetime maximum intensity (LMI) are similar to that of the TC MACE. Strong and long-lived TCs, which have relatively long predictability, mainly form in the southwestern WNP. In contrast, weak and short-lived TCs, which have relatively short predictability, mainly form in the SCS. In addition to the dependence of the predictability limit on genesis location, the predictability limits of TC intensity also evolve in the TC life cycle. The predictability limit of the TC MCP (MSW) gradually decreases from 102 (108) h at genesis time (00 h) to 54 (84) h 4 days after TC genesis.

Full access
Yuan Wang, Lifeng Zhang, Jun Peng, and Saisai Liu

Abstract

A high-resolution cloud-permitting simulation with the Weather Research and Forecasting (WRF) Model is performed to investigate the mesoscale horizontal kinetic energy (HKE) spectra of a tropical cyclone (TC). The spectrum displays an arc-like shape in the troposphere and a quasi-linear shape in the lower stratosphere for wavelengths below 500 km during the mature period of the TC, while they both develop a quasi −5/3 slope. The total HKE spectrum is dominated by its rotational component in the troposphere but by its divergent component in the lower stratosphere. Further spectral HKE budget diagnosis reveals a generally downscale cascade of HKE, although a local upscale cascade gradually forms in the lower stratosphere. However, the mesoscale energy spectrum is not only governed by the energy cascade, but is evidently influenced also by other physical processes, among which the buoyancy effect converts available potential energy (APE) to HKE in the mid- and upper troposphere and converts HKE to APE in the lower stratosphere, the vertically propagating inertia–gravity waves transport the HKE from the upper troposphere to lower and higher layers, and the vertical transportation of convection always transports HKE upward.

Full access
Yuxuan Yang, Lifeng Zhang, Bin Zhang, Wei You, Mingyang Zhang, and Binpeng Xie

Abstract

The sensitivity of the proper orthogonal decomposition (POD)-based ensemble four-dimensional variational assimilation (4DVar) method (referred to as POD-4DEnVar) to cumulus and microphysics schemes was investigated using the Weather Research and Forecasting (WRF) Model for heavy rainfall in South China. Results show that the choice of the cumulus and microphysics schemes for ensemble samples significantly impacts precipitation prediction and that Doppler radar data assimilation using POD-4DEnVar is sensitive to the parameterization schemes used for the ensemble samples. The cumulus and microphysics schemes primarily affect the vertical velocity and rainwater mixing ratio of the ensemble forecasts. Variations in the ensemble samples caused by different parameterization schemes are introduced into the four-dimensional ensemble variational assimilation by the radar data observation operator. These variations affect the analysis fields and result in variations in precipitation prediction. To obtain the optimal result (smallest forecast error), three methods are designed based on the physical ensemble technique, which can filter out the effects of different parameterization schemes for the ensemble samples through averaging. The results show that the precipitation forecasts from the three assimilation experiments are improved compared with a control experiment, but each physical ensemble method leads to a unique precipitation forecast.

Full access
Yun Zhang, Zuhang Wu, Lifeng Zhang, Yanqiong Xie, Yanbin Huang, and Hepeng Zheng

Abstract

Raindrop size distribution (DSD) characteristics during the East Asian summer monsoon (EASM) were studied, using measurements from three OTT Particle Size Velocity (Parsivel) disdrometers in Nanjing, Chuzhou, and the northwestern Pacific (NWP), respectively. Western and eastern parts of the monsoon rainband were separated for a comparative study of the DSD variability. Along with disdrometer data, GPM Dual-Frequency Precipitation Radar (DPR), Fengyun-2E (FY-2E), MODIS, GPCP, ERA-Interim, and in situ radiosonde datasets are combined to illustrate the possible microphysical mechanisms for the significant DSD variability in two parts, in terms of convective intensity, cloud structure, and aerosol effects. The DSD characteristics of six rain-rate classes and two rainfall categories (convective and stratiform) were studied. The western part has larger mass-weighted mean diameter D m while smaller normalized intercept log10(N w) than the eastern part, and the convective clusters of the western part (land) could be identified more maritime-like than continental-like due to moisture transport from the tropical ocean, while that of the eastern part (sea) is between maritime-like and continental-like. Cross validation of GPM rainfall products are implemented based on surface disdrometer observations. DPR products manifest better performance over sea than land areas of the EASM rainband. Empirical D mZ e and N wD m relations were also derived preliminarily to improve the GPM rain-retrieval algorithms in the EASM season.

Open access