Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Lin Mu x
  • All content x
Clear All Modify Search
Haoyu Jiang and Lin Mu

Abstract

Wind-generated waves can propagate over large distances. Therefore, wave spectra from a fixed point can record information about air–sea interactions in distant areas. In this study, the spectral wave climate for a point in the tropical eastern Pacific Ocean is computed. Several well-defined wave climate systems are observed in the mean wave spectrum. Significant seasonal cycling, long-term trends, and correlations with the Southern Oscillation, the Arctic Oscillation, and the Antarctic Oscillation are observed in the local wave spectra, showing abundant climatic information. Projections of wind vectors on the directions pointing to the target location are used to connect the spectral wave climate and basin-scale wind climate, because significant correlations are observed between the wave spectra and the wind projections of both local and remote wind systems. The origins of all the identified wave climate systems, including the westerlies and the trade winds in both hemispheres, are clearly shown in wind projection maps. Some of these origins are thousands of kilometers away from the target point, demonstrating the validity of this connection. Comparisons are made between wave spectra and the corresponding local and remote wind fields with respect to seasonal and interannual variability and long-term trends. The results show that each frequency and direction of ocean wave spectra at a certain location can be approximately linked to the wind field for a geographical area, implying that it is feasible to reconstruct spectral wave climates from observational wind field data and monitor wind climates from observational wave spectra geographically far away.

Full access
Daosheng Wang, Haidong Pan, Lin Mu, Xianqing Lv, Bing Yan, and Hua Yang

Abstract

The coastal ocean sea level (SL) variations result from multiscale processes and are dominated by SL changes due to meteorological forcing. In this study, a new methodology, which combines inverted barometer correction and regression analysis (IBR), is developed to estimate the coastal ocean response to meteorological forcing in shallow water. The response is taken as the combination of the static ocean response calculated using the inverted barometer formula and the dynamic ocean response estimated using the multivariable linear regression involving atmospheric pressure and the wind component in the dominant wind orientation. IBR was implemented to estimate the coastal ocean response at two stations, E1 and E2, in Bohai Bay, China. The analyzed results indicate that at both stations, the adjusted SLs are related more to the regional wind, which is the averaged value of ERA-Interim data in Bohai Bay, than to the local wind. The estimated response using IBR with the regional meteorological forcing is much closer to the observed values than other methods, including the classical inverted barometer correction, the dynamic atmospheric correction, the multivariable linear regression, and the IBR with local forcing. The deviations between the observed values and the estimated values using IBR with regional meteorological forcing can be primarily attributed to remote wind. This case study indicates that IBR is a feasible and relatively effective method to estimate the coastal ocean response to meteorological forcing in shallow water.

Restricted access