Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Lindsay Bennett x
  • All content x
Clear All Modify Search
Lindsay J. Bennett, Tammy M. Weckwerth, Alan M. Blyth, Bart Geerts, Qun Miao, and Yvette P. Richardson

Abstract

The Boundary Layer Evolution (BLE) missions of the International H2O Project (IHOP_2002) were designed to provide comprehensive observations of the distribution of water vapor in the quiescent boundary layer and its evolution during the early morning. The case study discussed in this paper presents detailed observations of the development of the boundary layer from before sunrise through to the period of growth of the mature convective boundary layer (CBL) during the 14 June 2002 BLE mission. The large number of remote sensing platforms, including the multiple instruments collocated at the Homestead Profiling Site, provided a detailed set of measurements of the growth and structure of the CBL.

The observations describe the classic evolution of a daytime CBL, beginning with a shallow nocturnal boundary layer (NBL) below the remnants of the previous day’s mixed layer, or residual layer. The vertical distribution of humidity in these layers during the early morning was affected by advection of dry air and by gravity waves. About an hour after sunrise a CBL developed, and gradually deepened with time as it mixed out the NBL and residual layer. The growth of the top of the CBL was particularly well observed because of the strong vertical gradients in temperature, humidity, and aerosol concentration. As the CBL deepened and the average CBL wind speed decreased, the mode of convective organization evolved from horizontal convective rolls to open-celled convection. A unique set of detailed measurements of the structure of the open cells was obtained from multiple instruments including the Doppler-on-Wheels radar, the Mobile Integrated Profiling System wind profiler, and the Scanning Raman lidar. They showed the relationship between open cells, thermals, mantle echoes, and the CBL top.

Full access
Ryan R. Neely III, Louise Parry, David Dufton, Lindsay Bennett, and Chris Collier

Abstract

The Radar Applications in Northern Scotland (RAiNS) experiment took place from February to August 2016 near Inverness, Scotland. The campaign was motivated by the need to provide enhanced weather radar observations for hydrological applications for the Inverness region. Here we describe the campaign in detail and observations over the summer period of the campaign that show the improvements that high-resolution polarimetric radar observations may have on quantitative precipitation estimates in this region compared to concurrently generated operational radar quantitative precipitation estimates (QPEs). We further provide suggestions of methods for generating QPE using dual-polarization X-band radars in similar regions.

Open access
Tammy M. Weckwerth, Lindsay J. Bennett, L. Jay Miller, Joël Van Baelen, Paolo Di Girolamo, Alan M. Blyth, and Tracy J. Hertneky

Abstract

A case study of orographic convection initiation (CI) that occurred along the eastern slopes of the Vosges Mountains in France on 6 August 2007 during the Convective and Orographically-Induced Precipitation Study (COPS) is presented. Global positioning system (GPS) receivers and two Doppler on Wheels (DOW) mobile radars sampled the preconvective and storm environments and were respectively used to retrieve three-dimensional tomographic water vapor and wind fields. These retrieved data were supplemented with temperature, moisture, and winds from radiosondes from a site in the eastern Rhine Valley. High-resolution numerical simulations with the Weather Research and Forecasting (WRF) Model were used to further investigate the physical processes leading to convective precipitation.

This unique, time-varying combination of derived water vapor and winds from observations illustrated an increase in low-level moisture and convergence between upslope easterlies and downslope westerlies along the eastern slope of the Vosges Mountains. Uplift associated with these shallow, colliding boundary layer flows eventually led to the initiation of moist convection. WRF reproduced many features of the observed complicated flow, such as cyclonic (anticyclonic) flow around the southern (northern) end of the Vosges Mountains and the east-side convergent flow below the ridgeline. The WRF simulations also illustrated spatial and temporal variability in buoyancy and the removal of the lids prior to convective development. The timing and location of CI from the WRF simulations was surprisingly close to that observed.

Full access
David M. Plummer, Jeffrey R. French, David C. Leon, Alan M. Blyth, Sonia Lasher-Trapp, Lindsay J. Bennett, David R. L. Dufton, Robert C. Jackson, and Ryan R. Neely

Abstract

Analyses of the radar-observed structure and derived rainfall statistics of warm-season convection developing columns of enhanced positive differential reflectivity Z DR over England’s southwest peninsula are presented here. Previous observations of Z DR columns in developing cumulonimbus clouds over England were rare. The observations presented herein suggest otherwise, at least in the southwesterly winds over the peninsula. The results are the most extensive of their kind in the United Kingdom; the data were collected using the National Centre for Atmospheric Science dual-polarization X-band radar (NXPol) during the Convective Precipitation Experiment (COPE). In contrast to recent studies of Z DR columns focused on deep clouds that developed in high-instability environments, the COPE measurements show relatively frequent Z DR columns in shallower clouds, many only 4–5 km deep. The presence of Z DR columns is used to infer that an active warm rain process has contributed to precipitation evolution in convection deep enough for liquid and ice growth to take place. Clouds with Z DR columns were identified objectively in three COPE deployments, with both discrete convection and clouds embedded in larger convective complexes developing columns. Positive Z DR values typically extended to 1–1.25 km above 0°C in the columns, with Z DR ≥ 1 dB sometimes extending nearly 4 km above 0°C. Values above 3 dB typically occurred in the lowest 500 m above 0°C, with coincident airborne measurements confirming the presence of supercooled raindrops. Statistical analyses indicated that the convection that produced Z DR columns was consistently associated with the larger derived rainfall rates when compared with the overall convective population sampled by the NXPol during COPE.

Full access
David C. Leon, Jeffrey R. French, Sonia Lasher-Trapp, Alan M. Blyth, Steven J. Abel, Susan Ballard, Andrew Barrett, Lindsay J. Bennett, Keith Bower, Barbara Brooks, Phil Brown, Cristina Charlton-Perez, Thomas Choularton, Peter Clark, Chris Collier, Jonathan Crosier, Zhiqiang Cui, Seonaid Dey, David Dufton, Chloe Eagle, Michael J. Flynn, Martin Gallagher, Carol Halliwell, Kirsty Hanley, Lee Hawkness-Smith, Yahui Huang, Graeme Kelly, Malcolm Kitchen, Alexei Korolev, Humphrey Lean, Zixia Liu, John Marsham, Daniel Moser, John Nicol, Emily G. Norton, David Plummer, Jeremy Price, Hugo Ricketts, Nigel Roberts, Phil D. Rosenberg, David Simonin, Jonathan W. Taylor, Robert Warren, Paul I. Williams, and Gillian Young

Abstract

The Convective Precipitation Experiment (COPE) was a joint U.K.–U.S. field campaign held during the summer of 2013 in the southwest peninsula of England, designed to study convective clouds that produce heavy rain leading to flash floods. The clouds form along convergence lines that develop regularly as a result of the topography. Major flash floods have occurred in the past, most famously at Boscastle in 2004. It has been suggested that much of the rain was produced by warm rain processes, similar to some flash floods that have occurred in the United States. The overarching goal of COPE is to improve quantitative convective precipitation forecasting by understanding the interactions of the cloud microphysics and dynamics and thereby to improve numerical weather prediction (NWP) model skill for forecasts of flash floods. Two research aircraft, the University of Wyoming King Air and the U.K. BAe 146, obtained detailed in situ and remote sensing measurements in, around, and below storms on several days. A new fast-scanning X-band dual-polarization Doppler radar made 360° volume scans over 10 elevation angles approximately every 5 min and was augmented by two Met Office C-band radars and the Chilbolton S-band radar. Detailed aerosol measurements were made on the aircraft and on the ground. This paper i) provides an overview of the COPE field campaign and the resulting dataset, ii) presents examples of heavy convective rainfall in clouds containing ice and also in relatively shallow clouds through the warm rain process alone, and iii) explains how COPE data will be used to improve high-resolution NWP models for operational use.

Full access
Keith A. Browning, Alan M. Blyth, Peter A. Clark, Ulrich Corsmeier, Cyril J. Morcrette, Judith L. Agnew, Sue P. Ballard, Dave Bamber, Christian Barthlott, Lindsay J. Bennett, Karl M. Beswick, Mark Bitter, Karen E. Bozier, Barbara J. Brooks, Chris G. Collier, Fay Davies, Bernhard Deny, Mark A. Dixon, Thomas Feuerle, Richard M. Forbes, Catherine Gaffard, Malcolm D. Gray, Rolf Hankers, Tim J. Hewison, Norbert Kalthoff, Samiro Khodayar, Martin Kohler, Christoph Kottmeier, Stephan Kraut, Michael Kunz, Darcy N. Ladd, Humphrey W. Lean, Jürgen Lenfant, Zhihong Li, John Marsham, James McGregor, Stephan D. Mobbs, John Nicol, Emily Norton, Douglas J. Parker, Felicity Perry, Markus Ramatschi, Hugo M. A. Ricketts, Nigel M. Roberts, Andrew Russell, Helmut Schulz, Elizabeth C. Slack, Geraint Vaughan, Joe Waight, David P. Wareing, Robert J. Watson, Ann R. Webb, and Andreas Wieser

The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model.

A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety of ground-based remote-sensing instruments, numerous rawinsondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP.

This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.

Full access