Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Lindsay Blank x
  • All content x
Clear All Modify Search
William A. Gallus Jr., Jamie Wolff, John Halley Gotway, Michelle Harrold, Lindsay Blank, and Jeff Beck

Abstract

A well-known problem in high-resolution ensembles has been a lack of sufficient spread among members. Modelers often have used mixed physics to increase spread, but this can introduce problems including computational expense, clustering of members, and members that are not all equally skillful. Thus, a detailed examination of the impacts of using mixed physics is important. The present study uses two years of Community Leveraged Unified Ensemble (CLUE) output to isolate the impact of mixed physics in 36-h forecasts made using a convection-permitting ensemble with 3-km horizontal grid spacing. One 10-member subset of the CLUE used only perturbed initial conditions (ICs) and lateral boundary conditions (LBCs) while another 10-member ensemble used the same mixed ICs and LBCs but also introduced mixed physics. The cases examined occurred during NOAA’s Hazardous Weather Testbed Spring Forecast Experiments in 2016 and 2017. Traditional gridpoint metrics applied to each member and the ensemble as a whole, along with object-based verification statistics for all members, were computed for composite reflectivity and 1- and 3-h accumulated precipitation using the Model Evaluation Tools (MET) software package. It is found that the mixed physics increases variability substantially among the ensemble members, more so for reflectivity than precipitation, such that the envelope of members is more likely to encompass the observations. However, the increased variability is mostly due to the introduction of both substantial high biases in members using one microphysical scheme, and low biases in other schemes. Overall ensemble skill is not substantially different from the ensemble using a single physics package.

Full access
Barbara Brown, Tara Jensen, John Halley Gotway, Randy Bullock, Eric Gilleland, Tressa Fowler, Kathryn Newman, Dan Adriaansen, Lindsay Blank, Tatiana Burek, Michelle Harrold, Tracy Hertneky, Christina Kalb, Paul Kucera, Louisa Nance, John Opatz, Jonathan Vigh, and Jamie Wolff

Capsule summary

MET is a community-based package of state-of-the-art tools to evaluate predictions of weather, climate, and other phenomena, with capabilities to display and analyze verification results via the METplus system.

Full access
Burkely T. Gallo, Jamie K. Wolff, Adam J. Clark, Israel Jirak, Lindsay R. Blank, Brett Roberts, Yunheng Wang, Chunxi Zhang, Ming Xue, Tim Supinie, Lucas Harris, Linjiong Zhou, and Curtis Alexander

Abstract

Verification methods for convection-allowing models (CAMs) should consider the finescale spatial and temporal detail provided by CAMs, and including both neighborhood and object-based methods can account for displaced features that may still provide useful information. This work explores both contingency table–based verification techniques and object-based verification techniques as they relate to forecasts of severe convection. Two key fields in severe weather forecasting are investigated: updraft helicity (UH) and simulated composite reflectivity. UH is used to generate severe weather probabilities called surrogate severe fields, which have two tunable parameters: the UH threshold and the smoothing level. Probabilities computed using the UH threshold and smoothing level that give the best area under the receiver operating curve result in very high probabilities, while optimizing the parameters based on the Brier score reliability component results in much lower probabilities. Subjective ratings from participants in the 2018 NOAA Hazardous Weather Testbed Spring Forecasting Experiment (SFE) provide a complementary evaluation source. This work compares the verification methodologies in the context of three CAMs using the Finite-Volume Cubed-Sphere Dynamical Core (FV3), which will be the foundation of the U.S. Unified Forecast System (UFS). Three agencies ran FV3-based CAMs during the five-week 2018 SFE. These FV3-based CAMs are verified alongside a current operational CAM, the High-Resolution Rapid Refresh version 3 (HRRRv3). The HRRR is planned to eventually use the FV3 dynamical core as part of the UFS; as such evaluations relative to current HRRR configurations are imperative to maintaining high forecast quality and informing future implementation decisions.

Restricted access