Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Ling-Feng Hsiao x
  • Refine by Access: All Content x
Clear All Modify Search
Ling-Feng Hsiao
,
Melinda S. Peng
,
Der-Song Chen
,
Kang-Ning Huang
, and
Tien-Chiang Yeh

Abstract

Tropical cyclone (TC) track predictions from the operational regional nonhydrostatic TC forecast system of the Taiwanese Central Weather Bureau (CWB) are examined for their sensitivities to initial and lateral boundary conditions. Five experiments are designed and discussed, each using a combination of different initial and lateral boundary conditions coming either from the CWB or the National Centers for Environmental Prediction (NCEP) global forecast system. Eight typhoons in the western Pacific Ocean with 51 cases in 2004 and 2005 are tested with the five designed experiments for the 3-day forecast. The average track forecasts are the best when both the initial and lateral boundary conditions are from the NCEP global forecast system. This reflects the generally superior performance of the NCEP global forecast system relative to that of the CWB. Using different lateral boundary conditions has a greater impact on the track than using different initial conditions. Diagnostics using piecewise inversion of potential vorticity perturbations are carried out to identify synoptic features surrounding the featured typhoon that impact the track the most in each experiment. For the two cases demonstrated with the largest track improvement using NCEP global fields, the diagnostics indicate that the prediction of the strength and extent of the subtropical high in the western Pacific plays the major role in affecting these storm tracks. Using the analysis and predictions of the CWB global forecast system as the initial and lateral boundary conditions produces an overintensified subtropical ridge in the regional TC forecast model. Because most of the typhoons studied are located in the southwestern peripheral of the western Pacific subtropical high, the stronger steering from the more intense and extended high system is the main cause of the poleward bias in the predicted typhoon tracks in the operational run, which uses the CWB global forecast fields. The study suggests that, when efforts are made to improve a regional TC forecast model, it is also critically important to improve the global forecast system that provides the lateral boundary and initial conditions to the regional system.

Full access
Xin Zhang
,
Ying-Hwa Kuo
,
Shu-Ya Chen
,
Xiang-Yu Huang
, and
Ling-Feng Hsiao

Abstract

The nonlocal excess phase observation operator for assimilating the global positioning system (GPS) radio occultation (RO) sounding data has been proven by some research papers to produce significantly better analyses for numerical weather prediction (NWP) compared to the local refractivity observation operator. However, the high computational cost and the difficulties in parallelization associated with the nonlocal GPS RO operator deter its application in research and operational NWP practices. In this article, two strategies are designed and implemented in the data assimilation system for the Weather Research and Forecasting Model to demonstrate the capability of parallel assimilation of GPS RO profiles with the nonlocal excess phase observation operator. In particular, to solve the parallel load imbalance problem due to the uneven geographic distribution of the GPS RO observations, round-robin scheduling is adopted to distribute GPS RO observations among the processing cores to balance the workload. The wall clock time required to complete a five-iteration minimization on a demonstration Antarctic case with 106 GPS RO observations is reduced from more than 3.5 h with a single processing core to 2.5 min with 106 processing cores. These strategies present the possibility of application of the nonlocal GPS RO excess phase observation operator in operational data assimilation systems with a cutoff time limit.

Full access
Jing-Shan Hong
,
Chin-Tzu Fong
,
Ling-Feng Hsiao
,
Yi-Chiang Yu
, and
Chian-You Tzeng

Abstract

In this study, an ensemble typhoon quantitative precipitation forecast (ETQPF) model was developed to provide typhoon rainfall forecasts for Taiwan. The ETQPF rainfall forecast is obtained by averaging the pick-out cases, which are screened using certain criterion based on given typhoon tracks from an ensemble prediction system (EPS). Therefore, the ETQPF model resembles a climatology model. However, the ETQPF model uses the quantitative precipitation forecasts (QPFs) from an EPS instead of historical rainfall observations. Two typhoon cases, Fanapi (2010) and Megi (2010), are used to evaluate the ETQPF model performance. The results show that the rainfall forecast from the ETQPF model, which is qualitatively compared and quantitatively verified, provides reasonable typhoon rainfall forecasts and is valuable for real-time operational applications. By applying the forecast track to the ETQPF model, better track forecasts lead to better ETQPF rainfall forecasts. Moreover, the ETQPF model provides the “scenario” of the typhoon QPFs according to the uncertainty of the forecast tracks. Such a scenario analysis can provide valuable information for risk assessment and decision making in disaster prevention and reduction. Deficiencies of the ETQPF model are also presented, including that the average over the pick-out case usually offsets the extremes and reduces the maximum ETQPF rainfall, the underprediction is especially noticeable for weak phase-locked rainfall systems, and the ETQPF rainfall error is related to the model bias. Therefore, reducing model bias is an important issue in further improving the ETQPF model performance.

Full access
Hui Liu
,
Ying-Hwa Kuo
,
Sergey Sokolovskiy
,
Xiaolei Zou
,
Zhen Zeng
,
Ling-Feng Hsiao
, and
Benjamin C. Ruston

Abstract

The fluctuation of radio occultation (RO) signals in the presence of refractivity irregularities in the moist lower troposphere results in uncertainties of retrieved bending angle and refractivity profiles. In this study the local spectral width (LSW) of RO signals, transformed to impact parameter representation, is used for the characterization of the uncertainty (random error) of retrieved bending angle and refractivity profiles. A large LSW has some correlation with the large mean difference (bias) of retrieved refractivity and bending angle from radiosondes and European Centre for Medium-Range Weather Forecasts analyses based on data from 2008 to 2014. An LSW-based quality control (QC) procedure is developed to eliminate low-quality (large random errors and biases) profiles from data assimilation. The LSW-based QC procedure is tested and evaluated in the assimilation of Constellation Observing System for Meteorology, Ionosphere and Climate RO data using the NCAR Data Assimilation Research Testbed and the Weather Research and Forecasting Model. Preliminary results, based on a 2-week data assimilation cycle, show that the LSW-based QC procedure improves water vapor analyses in the moist lower troposphere.

Full access
Ling-Feng Hsiao
,
Chi-Sann Liou
,
Tien-Chiang Yeh
,
Yong-Run Guo
,
Der-Song Chen
,
Kang-Ning Huang
,
Chuen-Teyr Terng
, and
Jen-Her Chen

Abstract

This paper introduces a relocation scheme for tropical cyclone (TC) initialization in the Advanced Research Weather Research and Forecasting (ARW-WRF) model and demonstrates its application to 70 forecasts of Typhoons Sinlaku (2008), Jangmi (2008), and Linfa (2009) for which Taiwan’s Central Weather Bureau (CWB) issued typhoon warnings. An efficient and dynamically consistent TC vortex relocation scheme for the WRF terrain-following mass coordinate has been developed to improve the first guess of the TC analysis, and hence improves the tropical cyclone initialization. The vortex relocation scheme separates the first-guess atmospheric flow into a TC circulation and environmental flow, relocates the TC circulation to its observed location, and adds the relocated TC circulation back to the environmental flow to obtain the updated first guess with a correct TC position. Analysis of these typhoon cases indicates that the relocation procedure moves the typhoon circulation to the observed typhoon position without generating discontinuities or sharp gradients in the first guess.

Numerical experiments with and without the vortex relocation procedure for Typhoons Sinlaku, Jangmi, and Linfa forecasts show that about 67% of the first-guess fields need a vortex relocation to correct typhoon position errors while eliminates the topographical effect. As the vortex relocation effectively removes the typhoon position errors in the analysis, the simulated typhoon tracks are considerably improved for all forecast times, especially in the early periods as large adjustments appeared without the vortex relocation. Comparison of the horizontal and vertical vortex structures shows that large errors in the first-guess fields due to an incorrect typhoon position are eliminated by the vortex relocation scheme and that the analyzed typhoon circulation is stronger and more symmetric without distortions, and better agrees with observations. The result suggests that the main difficulty of objective analysis methods [e.g., three-dimensional variational data assimilation (3DVAR)], in TC analysis comes from poor first-guess fields with incorrect TC positions rather than not enough model resolution or observations. In addition, by computing the eccentricity and correlation of the axes of the initial typhoon circulation, the distorted typhoon circulation caused by the position error without the vortex relocation scheme is demonstrated to be responsible for larger track errors. Therefore, by eliminating the typhoon position error in the first guess that avoids a distorted initial typhoon circulation, the vortex relocation scheme is able to improve the ARW-WRF typhoon initialization and forecasts particularly when using data assimilation update cycling.

Full access
Ching-Yuang Huang
,
Shu-Ya Chen
,
S. K. A. V. Prasad Rao Anisetty
,
Shu-Chih Yang
, and
Ling-Feng Hsiao

Abstract

The impact of global positioning system (GPS) radio occultation (RO) soundings on the prediction of severe mei-yu frontal rainfall near Taiwan in June 2012 was investigated in this study using a developed local bending angle (LBA) operator. Two operators for local refractivity (REF) and nonlocal refractivity [excess phase (EPH)] were also used for comparisons. The devised LBA simplifies the calculation of the Abel transform in inverting model local refractivity without a loss of accuracy. These operators have been implemented into the three-dimensional variational data assimilation system of the Weather Research and Forecasting (WRF) Model to assimilate GPS RO soundings available from the Formosa Satellite Mission 3/Constellation Observing Systems for Meteorology, Ionosphere and Climate (FORMOSAT-3/COSMIC). The RO data are found to be beneficial to the WRF forecast of local severe rainfall in Taiwan. Characteristics of assimilation performance and innovation for the three operators are discussed. Both of the local operators performing assimilation at observation levels appear to produce mostly larger positive moisture increments than do the current nonlocal operators performing assimilation on the mean height of each model vertical level. As the information of the initial increments has propagated farther south with the frontal flow, the simulation for LBA shows better prediction of rainfall peaks in Taiwan on the second day than both REF and EPH, with a maximum improvement of about 25%. The positive impact of the RO data results partially from several RO observations near Mongolia and north China. This study provides an intercomparison among the three RO operators, and shows the feasibility of regional assimilation with LBA.

Full access
Ling-Feng Hsiao
,
Der-Song Chen
,
Ying-Hwa Kuo
,
Yong-Run Guo
,
Tien-Chiang Yeh
,
Jing-Shan Hong
,
Chin-Tzu Fong
, and
Cheng-Shang Lee

Abstract

In this paper, the impact of outer loop and partial cycling with the Weather Research and Forecasting Model’s (WRF) three-dimensional variational data assimilation system (3DVAR) is evaluated by analyzing 78 forecasts for three typhoons during 2008 for which Taiwan’s Central Weather Bureau (CWB) issued typhoon warnings, including Sinlaku, Hagupit, and Jangmi. The use of both the outer loop and the partial cycling approaches in WRF 3DVAR are found to reduce typhoon track forecast errors by more than 30%, averaged over a 72-h period. The improvement due to the outer loop approach, which can be more than 42%, was particularly significant in the early phase of the forecast. The use of the outer loop allows more observations to be assimilated and produces more accurate analyses. The assimilation of additional nonlinear GPS radio occultation (RO) observations over the western North Pacific Ocean, where traditional observational data are lacking, is particularly useful. With the lack of observations over the tropical and subtropical oceans, the error in the first-guess field (which is based on a 6-h forecast of the previous cycle) will continue to grow in a full-cycling limited-area data assimilation system. Even though the use of partial cycling only shows a slight improvement in typhoon track forecast after 12 h, it has the benefit of suppressing the growth of the systematic model error. A typhoon prediction model using the Advanced Research core of the WRF (WRF-ARW) and the WRF 3DVAR system with outer loop and partial cycling substantially improves the typhoon track forecast. This system, known as Typhoon WRF (TWRF), has been in use by CWB since 2010 for operational typhoon predictions.

Full access
Ling-Feng Hsiao
,
Xiang-Yu Huang
,
Ying-Hwa Kuo
,
Der-Song Chen
,
Hongli Wang
,
Chin-Cheng Tsai
,
Tien-Chiang Yeh
,
Jing-Shan Hong
,
Chin-Tzu Fong
, and
Cheng-Shang Lee

Abstract

A blending method to merge the NCEP global analysis with the regional analysis from the WRF variational data assimilation system is implemented using a spatial filter for the purpose of initializing the Typhoon WRF (TWRF) Model, which has been in operation at Taiwan’s Central Weather Bureau (CWB) since 2010. The blended analysis is weighted toward the NCEP global analysis for scales greater than the cutoff length of 1200 km, and is weighted toward the WRF regional analysis for length below that. TWRF forecast experiments on 19 typhoons from July to October 2013 over the western North Pacific Ocean show that the large-scale analysis from NCEP GFS is superior to that of the regional analysis, which significantly improves the typhoon track forecasts. On the other hand, the regional WRF analysis provides a well-developed typhoon structure and more accurately captures the influence of the Taiwan topography on the typhoon circulation. As a result, the blended analysis takes advantage of the large-scale analysis from the NCEP global analysis and the detailed mesoscale analysis from the regional WRF analysis. In additional to the improved track forecast, the blended analysis also provides more accurate rainfall forecasts for typhoons affecting Taiwan. Because of the improved performance, the blending method has been implemented in the CWB operational TWRF typhoon prediction system.

Full access