Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Liping Deng x
  • Refine by Access: All Content x
Clear All Modify Search
Xiaoqing Wu and Liping Deng

Abstract

The moist static energy (MSE) anomalies and MSE budget associated with the Madden–Julian oscillation (MJO) simulated in the Iowa State University General Circulation Model (ISUGCM) over the Indian and Pacific Oceans are compared with observations. Different phase relationships between MJO 850-hPa zonal wind, precipitation, and surface latent heat flux are simulated over the Indian Ocean and western Pacific, which are greatly influenced by the convection closure, trigger conditions, and convective momentum transport (CMT). The moist static energy builds up from the lower troposphere 15–20 days before the peak of MJO precipitation, and reaches the maximum in the middle troposphere (500–600 hPa) near the peak of MJO precipitation. The gradual lower-tropospheric heating and moistening and the upward transport of moist static energy are important aspects of MJO events, which are documented in observational studies but poorly simulated in most GCMs. The trigger conditions for deep convection, obtained from the year-long cloud-resolving model (CRM) simulations, contribute to the striking difference between ISUGCM simulations with the original and modified convection schemes and play the major role in the improved MJO simulation in ISUGCM. Additionally, the budget analysis with the ISUGCM simulations shows the increase in MJO MSE is in phase with the horizontal advection of MSE over the western Pacific, while out of phase with the horizontal advection of MSE over the Indian Ocean. However, the NCEP analysis shows that the tendency of MJO MSE is in phase with the horizontal advection of MSE over both oceans.

Full access
Liping Deng and Xiaoqing Wu

Abstract

Weak temporal variability in tropical climates such as the Madden–Julian oscillation (MJO) is one of major deficiencies in general circulation models (GCMs). The uncertainties in the representation of convection and cloud processes are responsible for these deficiencies. With the improvement made to the convection scheme, the Iowa State University (ISU) GCM, which is based on a version of the NCAR Community Climate Model, is able to simulate many features of MJO as revealed by observations. In this study, four 10-yr (1979–88) ISU GCM simulations with observed sea surface temperatures are analyzed and compared to examine the effects of the revised convection closure, convection trigger condition, and convective momentum transport (CMT) on the MJO simulations. The modifications made in the convection scheme improve the simulations of amplitude, spatial distribution, eastward propagation, and horizontal and vertical structures, especially for the coherent feature of eastward-propagating convection and the precursor sign of convective center. The revised convection closure plays a key role in the improvement of the eastward propagation of MJO. The convection trigger helps produce less frequent but more vigorous moist convection and enhance the amplitude of the MJO signal. The inclusion of CMT results in a more coherent structure for the MJO deep convective center and its corresponding atmospheric variances.

Full access
Liping Deng and Xiaoqing Wu

Abstract

The kinetic energy budget is conducted to analyze the physical processes responsible for the improved Madden–Julian oscillation (MJO) simulated by the Iowa State University general circulation models (ISUGCMs). The modified deep convection scheme that includes the revised convection closure, convection trigger condition, and convective momentum transport (CMT) enhances the equatorial (10°S–10°N) MJO-related perturbation kinetic energy (PKE) in the upper troposphere and leads to a more robust and coherent eastward-propagating MJO signal. In the MJO source region, the Indian Ocean (45°–120°E), the upper-tropospheric MJO PKE is maintained by the vertical convergence of wave energy flux and the barotropic conversion through the horizontal shear of mean flow. In the convectively active region, the western Pacific (120°E–180°), the upper-tropospheric MJO PKE is supported by the convergence of horizontal and vertical wave energy fluxes. Over the central-eastern Pacific (180°–120°W), where convection is suppressed, the upper-tropospheric MJO PKE is mainly due to the horizontal convergence of wave energy flux. The deep convection trigger condition produces stronger convective heating that enhances the perturbation available potential energy (PAPE) production and the upward wave energy fluxes and leads to the increased MJO PKE over the Indian Ocean and western Pacific. The trigger condition also enhances the MJO PKE over the central-eastern Pacific through the increased convergence of meridional wave energy flux from the subtropical latitudes of both hemispheres. The revised convection closure affects the response of mean zonal wind shear to the convective heating over the Indian Ocean and leads to the enhanced upper-tropospheric MJO PKE through the barotropic conversion. The stronger eastward wave energy flux due to the increase of convective heating over the Indian Ocean and western Pacific by the revised closure is favorable to the eastward propagation of MJO and the convergence of horizontal wave energy flux over the central-eastern Pacific. The convection-induced momentum tendency tends to decelerate the upper-tropospheric wind, which results in a negative work to the PKE budget in the upper troposphere. However, the convection momentum tendency accelerates the westerly wind below 800 hPa over the western Pacific, which is partially responsible for the improved MJO simulation.

Full access
Liping Deng, Sally A. McFarlane, and Julia E. Flaherty

Abstract

Ground-based high temporal and vertical resolution datasets from observations during 2002–07 at the Atmospheric Radiation Measurement (ARM) tropical western Pacific (TWP) site on Manus Island are used to examine the characteristics of clouds and rainfall associated with the active phase of the Madden–Julian oscillation (MJO) passing over Manus. A composite MJO event at Manus is developed based on the NOAA MJO index 4 and precipitation using 13 events. The cloud characteristics associated with the active phase of the MJO at Manus show a two-phase structure as the wave passes over Manus. During the development phase, congestus plays an important role, and the enhanced convection is located between surface westerly and easterly wind anomalies (type-I structure). During the mature phase, deep convection is the dominant cloud type, and the enhanced convection is collocated with the westerly wind anomalies (type-II structure). Consistent with this two-phase structure, the heavy rainfall frequency also shows a two-peak structure during the MJO disturbance, while light rainfall does not show a clear relation to the intraseasonal disturbance associated with the MJO. In addition, a positive relationship between the precipitation rate and precipitable water vapor exists at Manus, and the atmospheric column is less moist after the passing of the MJO convection center than before.

Full access
Xiaoqing Wu, Liping Deng, Xiaoliang Song, and Guang Jun Zhang

Abstract

The effects of convective momentum transport (CMT) on global climate simulations are examined in this study. Comparison between two sets of 20-yr (1979–98) integration using the NCAR Community Climate Model version 3 (CCM3) illustrates that the inclusion of CMT in the convection scheme systematically modifies the climate mean state over the equatorial region. The convective momentum tendencies slow down the equatorward flow at higher latitudes near the surface and weaken the equatorial convergence and convection. This reduces the convective heating and drying around the equator and produces an improved meridional distribution within the upward branch of the Hadley circulation. The major heating peak during the boreal winter is moved to south of the equator at about 10°S, which is closer to the heat budget residuals of the ECMWF reanalysis data. The responses of meridional wind to the reduced heating result in the secondary meridional circulation within the intertropical convergence zone.

Full access
Jinghua Chen, Xiaoqing Wu, Yan Yin, Chunsong Lu, Hui Xiao, Qian Huang, and Liping Deng

ABSTRACT

The influence of surface heat fluxes on the generation and development of cloud and precipitation and its relative importance to the large-scale circulation patterns are investigated via cloud-resolving model (CRM) simulations over the Tibetan Plateau (TP) during boreal summer. Over the lowland (e.g., along the middle and lower reaches of the Yangtze River), the dynamical and thermal properties of the atmosphere take more responsibility than the surface heat fluxes for the triggering of heavy rainfall events. However, the surface thermal driving force is a necessary criterion for the triggering of heavy rainfall in the eastern and western TP (ETP and WTP). Strong surface heat fluxes can trigger shallow convections in the TP. Furthermore, moisture that is mainly transported from the southern tropical ocean has a greater influence on the heavy rainfall events of the WTP than those of the ETP. Cloud microphysical processes are substantially less active and heavy rainfall cannot be produced when surface heat fluxes are weakened by half in magnitude over the TP. In addition, surface heating effects are largely responsible for the high occurrence frequency of convection during the afternoon, and the cloud tops of convective systems show a positive relationship with the intensity of surface heat fluxes.

Full access
Larry K. Berg, William I. Gustafson Jr., Evgueni I. Kassianov, and Liping Deng

Abstract

A new treatment for shallow clouds has been introduced into the Weather Research and Forecasting Model (WRF). The new scheme, called the cumulus potential (CuP) scheme, replaces the ad hoc trigger function used in the Kain–Fritsch cumulus parameterization with a trigger function related to the distribution of temperature and humidity in the convective boundary layer via probability density functions (PDFs). An additional modification to the default version of WRF is the computation of a cumulus cloud fraction based on the time scales relevant for shallow cumuli. Results from three case studies over the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in north-central Oklahoma are presented. These cases were selected because of the presence of shallow cumuli over the ARM site. The modified version of WRF does a much better job predicting the cloud fraction and the downwelling shortwave irradiance than control simulations utilizing the default Kain–Fritsch scheme. The modified scheme includes a number of additional free parameters, including the number and size of bins used to define the PDF, the minimum frequency of a bin within the PDF before that bin is considered for shallow clouds to form, and the critical cumulative frequency of bins required to trigger deep convection. A series of tests were undertaken to evaluate the sensitivity of the simulations to these parameters. Overall, the scheme was found to be relatively insensitive to each of the parameters.

Full access
Liping Deng, Matthew F. McCabe, Georgiy Stenchikov, Jason P. Evans, and Paul A. Kucera

Abstract

The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite, in situ, and reanalysis data. Here, we focus on characterizing the initial synoptic features and examining the impact of model parameterization and resolution on the reproduction of a number of flood-producing rainfall events that occurred over the western Saudi Arabian city of Jeddah. Analysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data suggests that mesoscale convective systems associated with strong moisture convergence ahead of a trough were the major initial features for the occurrence of these intense rain events. The WRF Model was able to simulate the heavy rainfall, with driving convective processes well characterized by a high-resolution cloud-resolving model. The use of higher (1 km vs 5 km) resolution along the Jeddah coastline favors the simulation of local convective systems and adds value to the simulation of heavy rainfall, especially for deep-convection-related extreme values. At the 5-km resolution, corresponding to an intermediate study domain, simulation without a cumulus scheme led to the formation of deeper convective systems and enhanced rainfall around Jeddah, illustrating the need for careful model scheme selection in this transition resolution. In analysis of multiple nested WRF simulations (25, 5, and 1 km), localized volume and intensity of heavy rainfall together with the duration of rainstorms within the Jeddah catchment area were captured reasonably well, although there was evidence of some displacements of rainstorm events.

Full access
Wan-Ru Huang, Ya-Hui Chang, Liping Deng, and Pin-Yi Liu

Abstract

Convective afternoon rainfall (CAR) events, which tend to generate a local rainfall typically in the afternoon, are among the most frequently observed local weather patterns over Southeast Asia during summer. Using satellite precipitation estimations as an observational base for model evaluation, this study examines the applicability of 10 global climate models provided by phase 6 of the Coupled Model Intercomparison Project (CMIP6) in simulating the CAR activities over Southeast Asia. Analyses also focus on exploring the characteristics and maintenance mechanisms of related projections of CAR activities in the future. Our analyses of the historical simulation indicate that EC-Earth3 and EC-Earth3-Veg are the two best models for simulating CAR activities (including amount, frequency, and intensity) over Southeast Asia. Analyses also demonstrate that EC-Earth3 and EC-Earth3-Veg outperform their earlier version (i.e., EC-Earth) in CMIP5 owing to the improvement in its spatial resolution in CMIP6. For future projections, our examinations of the differences in CAR activities between the future (2071–2100, under the SSP858 run) and the present (1985–2014, under the historical run) indicate that CAR events will become fewer but more intense over most land areas of Southeast Asia. Possible causes of the projected increase (decrease) in CAR intensity (frequency) are attributed to the projected increase (decrease) in the local atmospheric humidity (sea breeze convergence and daytime thermal instability). These findings provide insight into how the local weather/climate over Southeast Asia is likely to change under global warming.

Restricted access