Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Loredana Warren x
  • All content x
Clear All Modify Search
Michael J. Manton and Loredana Warren

Abstract

The Snowy Precipitation Enhancement Research Project (SPERP) was undertaken in winters from May 2005 to June 2009 in the Snowy Mountains region of southeastern Australia. Part I of this paper describes the design and implementation of the project, as well as the characteristics of the key datasets collected during the field phase. The primary analysis in this paper (Part II) shows an unequivocal impact on the targeting of seeding material, with the maximum level of silver in snow samples collected from the primary target area found to be significantly greater in seeded than unseeded experimental units (EUs). A positive but not statistically significant impact on precipitation was found. Further analysis shows that a substantial source of uncertainty in the estimation of the impacts of seeding on precipitation is associated with EUs where the seeding generators operated for relatively few hours. When the analysis is repeated using only EUs with more than 45 generator hours, the increase in precipitation in the primary target area is 14% at the 8% significance level. When applying that analysis to the overall target area, the precipitation increase is 14% at the 3% significance level. A secondary analysis of the ratio of silver to indium in snow supports the hypothesis that seeding material affected the cloud microphysics. Other secondary analyses reveal that seeding had an impact on virtually all of the physical variables examined in a manner consistent with the seeding hypothesis.

Full access
Michael J. Manton, Loredana Warren, Suzanne L. Kenyon, Andrew D. Peace, Shane P. Bilish, and Karen Kemsley

Abstract

The Snowy Precipitation Enhancement Research Project (SPERP) was undertaken from May 2005 to June 2009 in the Snowy Mountains of southeastern Australia with the aim of enhancing snowfall in westerly flows associated with winter cold fronts. Building on earlier field studies in the region, SPERP was developed as a confirmatory experiment of glaciogenic static seeding using a silver-chloroiodide material dispersed from ground-based generators. Seeding of 5-h experimental units (EUs) was randomized with a seeding ratio of 2:1. A total of 107 EUs were undertaken at suitable times, based on surface and upper-air observations. Indium (III) oxide was released during all EUs for comparison of indium and silver concentrations in snow in seeded and unseeded EUs to test the targeting of seeding material. A network of gauges was deployed at 44 sites across the region to detect whether precipitation was enhanced in a fixed target area of 832 km2, using observations from a fixed control area to estimate the natural precipitation in the target. Additional measurements included integrated supercooled liquid water at a site in the target area and upper-air data from a site upwind of the target.

Full access