Search Results

You are looking at 1 - 10 of 58 items for

  • Author or Editor: Lorenzo M. Polvani x
  • All content x
Clear All Modify Search
Joseph Pedlosky and Lorenzo M. Polvani

Abstract

Two slightly unstable baroclinic waves in the two-layer Phillips model are allowed to interact with each other as well as the mean flow. A theory for small dissipation rates is developed to examine the role of wave–wave interaction in the dynamics of vacillation and aperiodicity in unstable systems.

It is shown that the form of the dissipation mechanism as well as the overall dissipation timescale determines the nature of the dynamics. In particular, dissipation proportional to potential vorticity is shown to expunge amplitude vacillation due to wave–mean flow interactions.

Wave–wave interaction, however, can yield amplitude vacillation. As the dissipation is decreased, the solutions evolve from steady waves (although propagating) to periodic vacillation until finally at small dissipation rates, chaotic behavior is obtained.

This occurs in a range of relative growth rates of the two waves which depends on the strength of the wave–wave and wave–mean flow interactions.

Full access
Michael Previdi and Lorenzo M. Polvani

Abstract

The Montreal Protocol on Substances that Deplete the Ozone Layer, adopted in 1987, is an international treaty designed to protect the ozone layer by phasing out emissions of chlorofluorocarbons and other ozone-depleting substances (ODSs). A growing body of scientific evidence now suggests that the implementation of the Montreal Protocol will have significant effects on climate over the next several decades, both by enabling stratospheric ozone recovery and by decreasing atmospheric concentrations of ODSs, which are greenhouse gases. Here, using a state-of-the-art chemistry–climate model, the Community Earth System Model (Whole Atmosphere Community Climate Model) [CESM(WACCM)], it is shown that the Montreal Protocol, through its impact on atmospheric ODS concentrations, leads to a substantial decrease in Antarctic surface mass balance (SMB) over the period 2006–65 relative to a hypothetical “World Avoided” scenario in which the Montreal Protocol has not been implemented. This SMB decrease produces an additional 25 mm of global sea level rise (GSLR) by the year 2065 relative to the present day. It is found, however, that the additional GSLR resulting from the relative decrease in Antarctic SMB is more than offset by a reduction in ocean thermal expansion, leading to a net mitigation of future GSLR due to the Montreal Protocol.

Full access
Yutian Wu and Lorenzo M. Polvani

Abstract

Analysis of model output from phase 5 of the Coupled Model Intercomparison Project (CMIP5) reveals that, in the zonal mean, the near-term projections of summertime changes of precipitation in the Southern Hemisphere (SH) subtropics are very widely scattered among the models. As a consequence, over the next 50 years, the CMIP5 multimodel mean projects no statistically significant trends in the SH subtropics in summer. This appears to be at odds with the widely reported, and robust, poleward expansion of the subtropical dry zones by the end of the twenty-first century.

This discrepancy between the shorter- and longer-term projections in SH summer, as shown here, rests in the recovery of the ozone hole in the coming decades, as a consequence of the Montreal Protocol. This is explicitly demonstrated by analyzing model experiments with the Whole Atmosphere Community Climate Model, version 4 (WACCM4), a high-top model with interactive stratospheric chemistry, and coupled to land, ocean, and sea ice components. Contrasting WACCM4 integrations of the representative concentration pathway 4.5 with and without trends in surface concentrations of ozone-depleting substances allows for demonstrating that stratospheric ozone recovery will largely offset the induced “wet gets wetter and dry gets drier” projections and the accompanying poleward expansion of the subtropical dry zone in the SH. The lack of near-term statistically significant zonal-mean changes in the SH hydrological cycle during summer is of obvious practical importance for many parts of the world, and it might also have implications for the Southern Ocean and the Antarctic continent.

Full access
Gabriel Chiodo and Lorenzo M. Polvani

Abstract

The quantification of the climate impacts exerted by stratospheric ozone changes in abrupt 4 × CO2 forcing experiments is an important step in assessing the role of the ozone layer in the climate system. Here, we build on our previous work on the change of the ozone layer under 4 × CO2 and examine the effects of ozone changes on the climate response to 4 × CO2, using the Whole Atmosphere Community Climate Model. We show that the global-mean radiative perturbation induced by the ozone changes under 4 × CO2 is small, due to nearly total cancellation between high and low latitudes, and between longwave and shortwave fluxes. Consistent with the small global-mean radiative perturbation, the effect of ozone changes on the global-mean surface temperature response to 4 × CO2 is negligible. However, changes in the ozone layer due to 4 × CO2 have a considerable impact on the tropospheric circulation. During boreal winter, we find significant ozone-induced tropospheric circulation responses in both hemispheres. In particular, ozone changes cause an equatorward shift of the North Atlantic jet, cooling over Eurasia, and drying over northern Europe. The ozone signals generally oppose the direct effects of increased CO2 levels and are robust across the range of ozone changes imposed in this study. Our results demonstrate that stratospheric ozone changes play a considerable role in shaping the atmospheric circulation response to CO2 forcing in both hemispheres and should be accounted for in climate sensitivity studies.

Full access
Lorenzo M. Polvani and Katinka Bellomo

Abstract

It is widely appreciated that ozone-depleting substances (ODS), which have led to the formation of the Antarctic ozone hole, are also powerful greenhouse gases. In this study, we explore the consequence of the surface warming caused by ODS in the second half of the twentieth century over the Indo-Pacific Ocean, using the Whole Atmosphere Chemistry Climate Model (version 4). By contrasting two ensembles of chemistry–climate model integrations (with and without ODS forcing) over the period 1955–2005, we show that the additional greenhouse effect of ODS is crucial to producing a statistically significant weakening of the Walker circulation in our model over that period. When ODS concentrations are held fixed at 1955 levels, the forcing of the other well-mixed greenhouse gases alone leads to a strengthening—rather than weakening—of the Walker circulation because their warming effect is not sufficiently strong. Without increasing ODS, a surface warming delay in the eastern tropical Pacific Ocean leads to an increase in the sea surface temperature gradient between the eastern and western Pacific, with an associated strengthening of the Walker circulation. When increasing ODS are added, the considerably larger total radiative forcing produces a much faster warming in the eastern Pacific, causing the sign of the trend to reverse and the Walker circulation to weaken. Our modeling result suggests that ODS may have been key players in the observed weakening of the Walker circulation over the second half of the twentieth century.

Full access
Yutian Wu and Lorenzo M. Polvani

Abstract

Observations show an increase in maximum precipitation extremes and a decrease in maximum temperature extremes over southeastern South America (SESA) in the second half of the twentieth century. The Community Earth System Model (CESM) Large Ensemble (LE) experiments are able to successfully reproduce the observed trends of extreme precipitation and temperature over SESA. Careful analysis of a smaller ensemble of CESM-LE single forcing experiments reveals that the trends of extreme precipitation and temperature over SESA are mostly caused by stratospheric ozone depletion. The underlying dynamical mechanism is investigated and it is found that, as a consequence of stratospheric ozone depletion and the resulting southward shift of tropospheric jet streams, anomalous easterly flow and more intense cyclones have occurred over SESA, which are favorable for heavier rainfall extremes and milder heat extremes.

Full access
Rei Chemke and Lorenzo M. Polvani

Abstract

Future emissions of greenhouse gases into the atmosphere are projected to result in significant circulation changes. One of the most important changes is the widening of the tropical belt, which has great societal impacts. Several mechanisms (changes in surface temperature, eddy phase speed, tropopause height, and static stability) have been proposed to explain this widening. However, the coupling between these mechanisms has precluded elucidating their relative importance. Here, the abrupt quadrupled-CO2 simulations of phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used to examine the proposed mechanisms. The different time responses of the different mechanisms allow us to disentangle and evaluate them. As suggested by earlier studies, the Hadley cell edge is found to be linked to changes in subtropical baroclinicity. In particular, its poleward shift is accompanied by an increase in subtropical static stability (i.e., a decrease in temperature lapse rate) with increased CO2 concentrations. These subtropical changes also affect the eddy momentum flux, which shifts poleward together with the Hadley cell edge. Transient changes in tropopause height, eddy phase speed, and surface temperature, however, were found not to accompany the poleward shift of the Hadley cell edge. The widening of the Hadley cell, together with the increase in moisture content, accounts for most of the expansion of the dry zone. Eddy moisture fluxes, on the other hand, are found to play a minor role in the expansion of the dry zone.

Full access
Sarah M. Kang and Lorenzo M. Polvani

Abstract

A strong correlation between the latitudes of the eddy-driven jet and of the Hadley cell edge, on interannual time scales, is found to exist during austral summer, in both the NCEP–NCAR reanalysis and the models participating in the Coupled Model Intercomparison Project, phase 3 (CMIP3). In addition, a universal ratio close to 1:2 characterizes the robust connection between these two latitudes on a year-to-year basis: for a 2° shift of the eddy-driven jet, the edge of the Hadley cell shifts by 1°. This 1:2 interannual ratio remains the same in response to climate change, even though the values of the two latitudes increase. The corresponding trends are also highly correlated; in the CMIP3 scenario integrations, however, no universal ratio appears to exist connecting these long-term trends. In austral winter and in the Northern Hemisphere, no strong interannual correlations are found.

Full access
Kevin M. Grise and Lorenzo M. Polvani

Abstract

This study examines the time scales of the Southern Hemisphere (SH) tropospheric circulation response to increasing atmospheric CO2 concentrations in models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). In response to an abrupt quadrupling of atmospheric CO2, the midlatitude jet stream and poleward edge of the Hadley circulation shift poleward on the time scale of the rising global-mean surface temperature during the summer and fall seasons but on a much more rapid time scale during the winter and spring seasons. The seasonally varying time scales of the SH circulation response are closely tied to the meridional temperature gradient in the upper troposphere–lower stratosphere and, in particular, to temperatures in the SH polar lower stratosphere. During summer and fall, SH polar lower-stratospheric temperatures cool on the time scale of warming global surface temperatures, as the lifting of the tropopause height with tropospheric warming is associated with cooling at lower-stratospheric levels. However, during winter and spring, SH polar lower-stratospheric temperatures cool primarily from fast time-scale radiative processes, contributing to the faster time-scale circulation response during these seasons.

The poleward edge of the SH subtropical dry zone shifts poleward on the time scale of the rising global-mean surface temperature during all seasons in response to an abrupt quadrupling of atmospheric CO2. The dry zone edge initially follows the poleward shift in the Hadley cell edge but is then augmented by the action of eddy moisture fluxes in a warming climate. Consequently, with increasing atmospheric CO2 concentrations, key features of the tropospheric circulation response could emerge sooner than features more closely tied to rising global temperatures.

Full access
Kevin M. Grise and Lorenzo M. Polvani

Abstract

This study quantifies cloud–radiative anomalies associated with interannual variability in the latitude of the Southern Hemisphere (SH) midlatitude eddy-driven jet, in 20 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Two distinct model types are found. In the first class of models (type I models), total cloud fraction is reduced at SH midlatitudes as the jet moves poleward, contributing to enhanced shortwave radiative warming. In the second class of models (type II models), this dynamically induced cloud radiative warming effect is largely absent. Type I and type II models have distinct deficiencies in their representation of observed Southern Ocean clouds, but comparison with two independent satellite datasets indicates that the cloud–dynamics behavior of type II models is more realistic.

Because the SH midlatitude jet shifts poleward in response to CO2 forcing, the cloud–dynamics biases uncovered from interannual variability are directly relevant for climate change projections. In CMIP5 model experiments with abruptly quadrupled atmospheric CO2 concentrations, the global-mean surface temperature initially warms more in type I models, even though their equilibrium climate sensitivity is not significantly larger. In type I models, this larger initial warming is linked to the rapid adjustment of the circulation and clouds to CO2 forcing in the SH, where a nearly instantaneous poleward shift of the midlatitude jet is accompanied by a reduction in the reflection of solar radiation by clouds. In type II models, the SH jet also shifts rapidly poleward with CO2 quadrupling, but it is not accompanied by cloud radiative warming anomalies, resulting in a smaller initial global-mean surface temperature warming.

Full access