Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Lothar Stramma x
  • Refine by Access: All Content x
Clear All Modify Search
Lothar Stramma

Abstract

In this paper, the historical hydrographic database for the south Indian Ocean is used to investigate (i) the hydrographic boundary between the subtropical gyre and the Antarctic Circumpolar Current (ACC), the sub-tropical front (STF), and especially (ii) the southern current band of the gyre. A current band of increased zonal speeds in the upper 1000 m is found just north of the STF in the west near South Africa and at the surface STF in the open Indian Ocean until the waters off the coast of Australia are reached. As neither any other investigation of this current nor a name for it are known, the flow has been called the South Indian Ocean Current (SIOC). This name is anologous to the same current band in the South Atlantic Ocean, the South Atlantic Current. The STF is located in the entire south Indian Ocean near 40°S. The associated current band of increased zonal speeds is the SIOC, which is found at or north of the STF. East of 100°E the SIOC separates from the STF and continues to the northeast. The zonal flow south of the STF is normally weak and serves to separate the South Indian Ocean and Circumpolar currents. New Africa the SIOC has a typical volume transport of 60 Sv (1 Sv ≡ 106 m33 s−1) in the upper 1000 m relative to deep potential density surfaces of σ4 = 45.87 kg m−3 (2800–3500 m) or σ2 = 36.94 kg m−3 (1500–2500 m). Near western Australia the SIOC is reduced to about 10 Sv as it turns to the northeast.

Full access
Lothar Stramma
and
Ray G. Peterson

Abstract

In this paper we use the historical hydrographic data base for the South Atlantic Ocean to investigate (i) the hydrographic boundary between the subtropical gyre and the Antarctic Circumpolar Current (ACC), the Sub-tropical Front (STF), and (ii) the southern current band of the gyre, which is called the South Atlantic Current (SAC). The STF begins in the west in the Brazil-Falkland (Malvinas) confluence zone, but at locations at and west of 45°W this front is often coincident with the Brazil Current front. East of 45°W the STF appears to be a distinct feature to at least the region south of Africa, whereupon it continues into the Indian Ocean. The associated current band of increased zonal speed is the SAC, which, except for one instance, is found at or north of the surface STF until Indian Ocean water from the Agulhas retroflection is reached. A reversal of baroclinicity in the STF is observed south of a highly saline Agulhas ring, causing the SAC to separate from the STF and turn north into the Benguela Current. Zonal flow south of the STF is generally weak and serves to separate the South Atlantic and circumpolar currents. In the Argentine Basin, the SAC has a typical volume transport of 30 Sv (1 Sv = 106m3s−1) in the upper 1000 m relative to a deep potential density surface (σ4 = 45.87 kg m−3), and can be as high as 37 Sv. It is thus comparable to, or stronger than, the Brazil Current. In the Cape Basin, the transport of the SAC is reduced to about 15 SY before it turns north to feed the Benguela Current. In late 1983 this flow was joined by about 8 Sv of water from the Agulhas Current.

Full access
Lothar Stramma
and
Ray G. Peterson

Abstract

Historical data from the region between the Greenwich meridian and the African continental shelf are used to compute the offshore geostrophic transport of the Benguela Current. At 32°S, the Benguela Current is located near the African coast, transporting about 21 Sv (1 Sv = 106 m3 s−1) of surface water toward the north relative to a potential density surface lying between the upper branch of Circumpolar Deep Water and the North Atlantic Deep Watar. Two warm core eddies of probable Agulhas Current origin an observed west of the Benguela Current at 32°S. Near 30°S, the Benguela Current turns toward the northwest and begins to separate from the eastern boundary. It carries about 18 Sv of surface water across 28°S. The current then turns mainly toward the west to flow over a relatively deep segment of the Walvis Ridge south of the Valdivia Bank. A surface current with northward surface of about 10 cm s−1 flows along the western side of the Valdivia Bank, while another northward surface current flows at about 20 cm s−1 some 300 km west of the bank. About 3 Sv of surface now do not leave the Cape Basin south of the Vaidivia Bank, but instead drift northward as a wide. sluggish flow out of the northern end of the Cape Basin. Because of the more southerly seaward extensions of most of the Benguela Current, there are no deep-reaching interactions observed between this current and the cyclonic gyre in the Angola Basin east of the Greenwich meridian. Beneath the surface layer, about 4–5 Sv of Antarctic Intermediate Water are carried northward across 32° and 28°S by the Benguela Current, essentially all of which turns westward to cross the Greenwich meridian south of 24°S.

Full access
Friedrich A. Schott
,
Jürgen Fischer
, and
Lothar Stramma

Abstract

The mean warm water transfer toward the equator along the western boundary of the South Atlantic is investigated, based on a number of ship surveys carried out during 1990–96 with CTD water mass observations and current profiling by shipboard and lowered (with the CTD/rosette) acoustic Doppler current profiler and with Pegasus current profiler. The bulk of the northward warm water flow follows the coast in the North Brazil Undercurrent (NBUC) from latitudes south of 10°S, carrying 23 Sv (Sv ≡ 106 m3 s−1) above 1000 m. Out of this, 16 Sv are waters warmer than 7°C that form the source waters of the Florida Current. Zonal inflow from the east by the South Equatorial Current enters the western boundary system dominantly north of 5°S, adding transport northwest of Cape San Roque, and transforming the NBUC along its way toward the equator into a surface-intensified current, the North Brazil Current (NBC). From the combination of moored arrays and shipboard sections just north of the equator along 44°W, the mean NBC transport was determined at 35 Sv with a small seasonal cycle amplitude of only about 3 Sv. The reason for the much larger near-equatorial northward warm water boundary current than what would be required to carry the northward heat transport are recirculations by the zonal current system and the existence of the shallow South Atlantic tropical–subtropical cell (STC). The STC connects the subduction zones of the eastern subtropics of both hemispheres via equatorward boundary undercurrents with the Equatorial Undercurrent (EUC), and the return flow is through upwelling and poleward Ekman transport. The persistent existence of a set of eastward thermocline and intermediate countercurrents on both sides of the equator was confirmed that recurred throughout the observations and carry ventilated waters from the boundary regime into the tropical interior. A strong westward current underneath the EUC, the Equatorial Intermediate Current, returns low-oxygen water westward. Consistent evidence for the existence of a seasonal variation in the warm water flow south of the equator could not be established, whereas significant seasonal variability of the boundary regime occurs north of the equator: northwestward alongshore throughflow of about 10 Sv of waters with properties from the Southern Hemisphere was found along the Guiana boundary in boreal spring when the North Equatorial Countercurrent is absent or even flowing westward, whereas during June–January the upper NBC is known to connect with the eastward North Equatorial Countercurrent through a retroflection zone that seasonally migrates up and down the coast and spawns eddies. The equatorial zone thus acts as a buffer and transformation zone for cross-equatorial exchanges, but knowledge of the detailed pathways in the interior including the involved diapycnal exchanges is still a problem.

Full access
Lothar Stramma
,
Ray G. Peterson
, and
Matthias Tomczak

Abstract

The Southern Hemisphere Subtropical Front (STF) is a narrow zone of transition between upper-level sub-tropical waters to the north and subantarctic waters to the south. It is found near 40°S across the South Atlantic and South Indian Oceans and is associated with an eastward geostrophic current band. The current band in each basin is found at or just north of the surface front except near the eastern boundaries where most of the subtropical waters turn north into the eastern limbs of the subtropical gyres. The bands associated with the STF are thus distinct features separated from the strong zonal flows of the Antarctic Circumpolar Current farther south. The authors have referred to the current bands in the two respective oceans as the South Atlantic Current and the South Indian Ocean Current. In this paper the authors use the historical database from the South Pacific Ocean to investigate the geostrophic flow associated with the STF there. The STF extends across the southern Tasman Sea from south of Tasmania to southern New Zealand, and a weak eastward flow appears to be associated with it. The transport amounts to only about 3 Sv (1Sv &equiv 106 m3 s−1), little of Which passes south of New Zealand. Mixing within the eddy-rich Tasman Sea may account for this weakness, while also setting up another more significant front in the northern Tasman Sea, the Tasman Front. It branches off from the East Australian Current toward the north of New Zealand, along which moves a flow of about 14 Sv. After passing north of New Zealand, a portion of this current flows east to contribute to a current band near 30°S, while another portion turns south as the East Auckland Current and meets with subantarctic waters near Chatham Rise (44°S), thus reestablishing the STF.

An enhanced eastward current band is associated with the front there, one that extends across the remainder of the South Pacific and is referred to as the South Pacific Current. In comparison with its counterparts in the other basins, which typically begin by carrying 30 Sv (Atlantic) to 60 Sv (Indian) in the upper 1000 m in their western portions before weakening to 10–15 Sv in the east, the South Pacific Current is weak. Near Chatham Rise, it starts with a transport of approximately 5 Sv, and it remains near this strength as it shifts gradually north across the basin toward South America. The current appears to split into two smaller bands in the region of 115°–85°W, while near 28°S, 83°W it begins to turn more strongly north and becomes shallower and weaker. Potential vorticity distributions indicate that this current acts as an impediment toward the northward spreading of Antarctic Intermediate Water. But why the South Pacific Current east of New Zealand should be so much weaker than its counterparts in the other basins is not particularly clear. It may be due to the presence of New Zealand and other topographic barriers to deep flow east of Australia, to the axis of the subtropical gyre in the South Pacific shifting more rapidly southward with depth than those elsewhere, thus causing greater reductions in the underlying zonal velocities, and to strong poleward eddy heat and salt fluxes in the other two basins leading to smaller cross-STF gradients in the Pacific.

Full access
Friedrich Schott
,
Martin Visbeck
,
Uwe Send
,
Jürgen Fischer
,
Lothar Stramma
, and
Yves Desaubies

Abstract

During December 1991 to April 1992 measurements with moored acoustic Doppler current profiler (ADCP) stations and shipboard surveys were carried out in the convection regime of the Gulf of Lions, northwestern Mediterranean. First significant mixed layer deepening and generation of internal waves in the stratified intermediate layer occurred during a mistral cooling phase in late December. Mixed layer deepening to about 400 m, eroding the salinity maximum layer of saltier and warmer Levantine Intermediate Water and causing temporary surface-layer warming, followed during a second cooling period of late January.

During a mistral cooling period from 18 to 23 February 1992, convection to 1500-m depth was observed, where the size of the convection regime was 50–100 km extent. Vertical velocities 40–640 m deep, recorded by four ADCPs of a triangular moored array of 2 km sidelength in the center of the convection regime, exceeded 5 cm s−1 and were not correlated over the separation of the moorings. Horizontal scales estimated from event duration and advection velocity were only around 500 m, in agreement with scaling arguments for convective plumes. Plume activity during nighttime cooling was larger than daytime daytime. Significant evidence for rotation of the plumes could not be found. Overall, plume energy, and the degree of mixing accomplished by them, was much lower than observed during a stronger mistral in February 1987.

The mean vertical velocity over the mistral period, determined from the four ADCPs, was near zero, confirming the role of plumes as mixing agents rather than as part of a mean downdraft in a convection regime. The cyclonic rim current around the convection regime was confined to a strip of <20 km width with an average velocity of about 10 cm s−1, which is in agreement with near-zero vertical mean velocity in the interior based on potential vorticity conservation. A relation between variations of the larger-scale cyclonic North Mediterranean Current along the boundary and the deep convection could not be identified. An unexplained feature still is the cover of the convection regime by a shallow layer of light water that moves in rather quickly from the sides after the cooling ends.

Full access
Gerhard Thiele
,
Wolfgang Roether
,
Peter Schlosser
,
Reinhard Kuntz
,
Gerold Siedler
, and
Lothar Stramma

Abstract

Simulated transient-tracer distributions (tritium, 3H3, freons) on the isopycnal horizons σ0=26.5 and 26.8 kg m−3 are presented for the East Atlantic, 10° −40°N. Tracer transport is modeled by employing a baroclinic flow field based on empirical data in a kinematic isopycnal advection-diffusion numerical model, in which winter convection is taken as the mechanism of communication with the ocean surface layer, and the isopycnal diffusivity is a free parameter. Diapucnic transport is ignored. The simulations employ time-dependent tracer boundary conditions, which are constructed on the basis of available observations. Simulations are compared to data obtained on a meridional section in 1981 (F/S Meteor, cruise 56/5). Best simulations were obtained by means of a subjective optimization procedure. On both levels, the observed distributions and the best simulated distributions agree well. The fact that the surface boundary conditions and interior distributions of the tracers are distinctly different leads us to the conclusion that our model provides a consistent description of upper main-thermocline ventilation and interior transport Surface-water densities in February are found to represent adequately the winter outcrop boundaries with an uncertainty of about ±300 km across. The required isopycnal diffusivity south of 29°N is 1700 m2 s−1, and 2900 m2 s−1 further north (+70/−40%). Interior transport is found to be predominantly advective. Advective ventilation across 30.5°N east of 33°W amounts to only 12% and 40% for the 26.5 and 26.8 horizons of the total ventilation rates reported by Sarmiento. The North Atlantic/South Atlantic Central Water boundary near 15°N is found to be predominantly determined by advection.

Full access
Lothar Stramma
,
Peter Cornillon
,
Robert A. Weller
,
James F. Price
, and
Melbourne G. Briscoe

Abstract

Data from a surface mooring located in the Sargasso Sea at 34°N, 70°W between May 1982 and May 1984 were compared with satellite data to investigate large diurnal sea surface temperature changes. Mooring and satellite measurements are in excellent agreement for those days on which no clouds covered the site at the time of the satellite pass. During the summer half-year at this site, there is a 20% charm of diurnal warming of more than 0.5°C, with values of up to 3.5°C observed in the two-year period.

Diurnal warming observed at the mooring has been simulated well by a one-dimensional model driven by local beat and momentum fluxes. Under the conditions of very light wind and strong insolation that produce the Largest surface warming, the surface mixed-layer depth reduces to the convection depth, and wind-mixing becomes unimportant. The thermal response is then limited to depths between 1 and 2 m, making it likely that such events have been underreported in routine ship observations.

In all cases observed, the spatial extent of warming events as determined by satellite data are well correlated with the corresponding atmospheric pressure patterns. Conditions giving rise to the largest diurnal warming events are often associated with a westward-extending ridge of the Bermuda high. In the region studied, 57°–75°W and 29°–43°N, diurnal warming of more than 1°C was found on occasion to cover areas in excess of 300 000 km2, with warming of more than 2°C coveting areas in excess of 130 000 km2.

Full access
Peter Brandt
,
Verena Hormann
,
Arne Körtzinger
,
Martin Visbeck
,
Gerd Krahmann
,
Lothar Stramma
,
Rick Lumpkin
, and
Claudia Schmid

Abstract

Changes in the ventilation of the oxygen minimum zone (OMZ) of the tropical North Atlantic are studied using oceanographic data from 18 research cruises carried out between 28.5° and 23°W during 1999–2008 as well as historical data referring to the period 1972–85. In the core of the OMZ at about 400-m depth, a highly significant oxygen decrease of about 15 μmol kg−1 is found between the two periods. During the same time interval, the salinity at the oxygen minimum increased by about 0.1. Above the core of the OMZ, within the central water layer, oxygen decreased too, but salinity changed only slightly or even decreased. The scatter in the local oxygen–salinity relations decreased from the earlier to the later period suggesting a reduced filamentation due to mesoscale eddies and/or zonal jets acting on the background gradients. Here it is suggested that latitudinally alternating zonal jets with observed amplitudes of a few centimeters per second in the depth range of the OMZ contribute to the ventilation of the OMZ. A conceptual model of the ventilation of the OMZ is used to corroborate the hypothesis that changes in the strength of zonal jets affect mean oxygen levels in the OMZ. According to the model, a weakening of zonal jets, which is in general agreement with observed hydrographic evidences, is associated with a reduction of the mean oxygen levels that could significantly contribute to the observed deoxygenation of the North Atlantic OMZ.

Full access
Friedrich A. Schott
,
Marcus Dengler
,
Rainer Zantopp
,
Lothar Stramma
,
Jürgen Fischer
, and
Peter Brandt

Abstract

Repeated shipboard observation sections across the boundary flow off northeastern Brazil as well as acoustic Doppler current profiler (ADCP) and current-meter records from a moored boundary array deployed during 2000–04 near 11°S are analyzed here for both the northward warm water flow by the North Brazil Undercurrent (NBUC) above approximately 1100 m and the southward flow of North Atlantic Deep Water (NADW) underneath. At 5°S, the mean from nine sections yields an NBUC transport of 26.5 ± 3.7 Sv (Sv ≡ 106 m3 s−1) along the boundary; at 11°S the mean NBUC transport from five sections is 25.4 ± 7.4 Sv, confirming that the NBUC is already well developed at 11°S. At both latitudes a persistent offshore southward recirculation between 200- and 1100-m depth reduces the net northward warm water flow through the 5°S section (west of 31.5°W) to 22.1 ± 5.3 Sv and through the 11°S section to 21.7 ± 4.1 Sv (west of 32.0°W). The 4-yr-long NBUC transport time series from 11°S yields a seasonal cycle of 2.5 Sv amplitude with its northward maximum in July. Interannual NBUC transport variations are small, varying only by ±1.2 Sv during the four years, with no detectable trend. The southward flow of NADW within the deep western boundary current at 5°S is 25.5 ± 8.3 Sv with an offshore northward recirculation, yielding a nine-section mean of 20.3 ± 10.1 Sv west of 31.5°W. For Antarctic Bottom Water, a net northward flow of 4.4 ± 3.0 Sv is determined at 5°S. For the 11°S section, the moored array data show a pronounced energy maximum at 60–70-day period in the NADW depth range, which was identified in related work as deep eddies translating southward along the boundary. Based on a kinematic eddy model fit to the first half of the moored time series, the mean NADW transfer by the deep eddies at 11°S was estimated to be about 17 Sv. Given the large interannual variability of the deep near-boundary transport time series, which ranged from 14 to 24 Sv, the 11°S mean was considered to be not distinguishable from the mean at 5°S.

Full access