Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Louise Nuijens x
  • All content x
Clear All Modify Search
Louise Nuijens and Bjorn Stevens

Abstract

The role of wind speed on shallow marine cumulus convection is explored using large-eddy simulations and concepts from bulk theory. Focusing on cases characteristic of the trades, the equilibrium trade wind layer is found to be deeper at stronger winds, with larger surface moisture fluxes and smaller surface heat fluxes. The opposing behavior of the surface fluxes is caused by more warm and dry air being mixed to the surface as the cloud layer deepens. This leads to little difference in equilibrium surface buoyancy fluxes and cloud-base mass fluxes. Shallow cumuli are deeper, but not more numerous or more energetic. The deepening response is necessary to resolve an inconsistency in the subcloud layer. This argument follows from bulk concepts and assumes that the lapse rate and flux divergence of moist-conserved variables do not change, based on simulation results. With that assumption, stronger winds and a fixed inversion height imply larger surface moisture and buoyancy fluxes (heat fluxes are small initially). The consequent moistening tends to decrease cloud-base height, which is inconsistent with a larger surface buoyancy flux that tends to increase cloud-base height, in order to maintain the buoyancy flux at cloud base at a fixed fraction of its surface value (entrainment closure). Deepening the cloud layer by increasing the inversion height resolves this inconsistency by allowing the surface buoyancy flux to remain constant without further moistening the subcloud layer. Because this explanation follows from simple bulk concepts, it is suggested that the internal dynamics (mixing) of clouds is only secondary to the deepening response.

Full access
Matthias Brueck, Louise Nuijens, and Bjorn Stevens

Abstract

The seasonality in large-scale meteorology and low-level cloud amount (CClow) is explored for a 5° × 5° area in the North Atlantic trades, using 12 years of ERA-Interim and MODIS data, supported by 2 years of Barbados Cloud Observatory (BCO) measurements. From boreal winter to summer, large-scale subsiding motion changes to rising motion, along with an increase in sea surface temperature, a clockwise turning and weakening of low-level winds, and reduced cold-air advection, lower-tropospheric stability (LTS), and surface fluxes. However, CClow is relatively invariant around 30%, except for a minimum of 20% in fall. This minimum is only pronounced when MODIS scenes with large high-level cloud amount are excluded, and a winter maximum in CClow is more pronounced at the BCO. On monthly time scales, wind speed has the best correlation with CClow. Existing large-eddy simulations suggest that the wind speed–CClow correlation may be explained by a direct deepening response of the trade wind layer to stronger winds. Large correlations of wind direction and advection with CClow also suggest that large-scale flow patterns matter. Smaller correlations with CClow are observed for LTS and surface evaporation, as well as negligible correlations for relative humidity (RH) and vertical velocity. However, these correlations considerably increase when only summer is considered. On synoptic time scales, all correlations drop substantially, whereby wind speed, RH, and surface sensible heat flux remain the leading parameters. The lack of a single strong predictor emphasizes that the combined effect of parameters is necessary to explain variations in CClow in the trades.

Full access
Malte Rieck, Louise Nuijens, and Bjorn Stevens

Abstract

The mechanisms that govern the response of shallow cumulus, such as found in the trade wind regions, to a warming of the atmosphere in which large-scale atmospheric processes act to keep relative humidity constant are explored. Two robust effects are identified. First, and as is well known, the liquid water lapse rate increases with temperature and tends to increase the amount of water in clouds, making clouds more reflective of solar radiation. Second, and less well appreciated, the surface fluxes increase with the saturation specific humidity, which itself is a strong function of temperature. Using large-eddy simulations it is shown that the liquid water lapse rate acts as a negative feedback: a positive temperature increase driven by radiative forcing is reduced by the increase in cloud water and hence cloud albedo. However, this effect is more than compensated by a reduction of cloudiness associated with the deepening and relative drying of the boundary layer, driven by larger surface moisture fluxes. Because they are so robust, these effects are thought to underlie changes in the structure of the marine boundary layer as a result of global warming.

Full access
Louise Nuijens, Bjorn Stevens, and A. Pier Siebesma

Abstract

Quantitative estimates of precipitation in a typical undisturbed trade wind region are derived from 2 months of radar reflectivity data and compared to the meteorological environment determined from soundings, surface flux, and airborne-lidar data. Shallow precipitation was ubiquitous, covering on average about 2% of the region and contributing to at least half of the total precipitation. Echo fractions on the scale of the radar domain range between 0% and 10% and vary greatly within a period from a few hours to a day. Variability in precipitation relates most strongly to variability in humidity and the zonal wind speed, although greater inversion heights and deeper clouds are also evident at times of more rain. The analysis herein suggests that subtle fluctuations in both the strength of the easterlies and in subsidence play a major role in regulating humidity and hence precipitation, even within a given meteorological regime (here, the undisturbed trades).

Full access
Jörg Burdanowitz, Louise Nuijens, Bjorn Stevens, and Christian Klepp

Abstract

Three state-of-the-art satellite climatologies are analyzed for their ability to observe light rain from predominantly shallow, warm clouds over the subtropical North Atlantic Ocean trade winds (1998–2005). HOAPS composite (HOAPS-C), version 3.2; TMPA, version 7; and GPCP 1 Degree Daily (1DD), version 1.2, are compared with ground-based S-Pol radar data from the Rain in Cumulus over the Ocean (RICO; winter 2004/05) campaign and Micro Rain Radar data from the Barbados Cloud Observatory (2010–12). Winter rainfall amounts to one-third of annual rainfall, whereby light rain from warm clouds dominates. Daily rain occurrence and rain intensity during RICO largely differ among the satellite climatologies. TMPA best captures the frequent light rain events, only missing 7% of days on which the S-Pol radar detects rain, whereas HOAPS-C misses 33% and GPCP 1DD misses 56%. Algorithm constraints mainly cause these differences. In HOAPS-C also few available passive microwave (PMW) sensor overpasses limit its performance. TMPA outperforms HOAPS-C when only comparing nonmissing time steps, yet HOAPS-C can detect rain for S-Pol rain-covered areas down to 2%. In GPCP 1DD’s algorithm, the underestimated rain occurrence derived from PMW scanners is linked to the overestimated rain intensity, being constrained by the GPCP monthly satellite–gauge combination, whereby IR sensors determine the timing. Algorithm improvements in version 1.2 increased the rain occurrence by 50% relative to version 1.1. In version 7 of TMPA, algorithm corrections in PMW sounder data largely improved the rain detection relative to version 6. TMPA best represents light rain in the North Atlantic trades, followed by HOAPS-C and GPCP 1DD.

Full access
Georgios Matheou, Daniel Chung, Louise Nuijens, Bjorn Stevens, and Joao Teixeira

Abstract

The present study considers the impact of various choices pertaining to the numerical solution of the governing equations on large-eddy simulation (LES) prediction and the association of these choices with flow physics. These include the effect of dissipative versus nondissipative advection discretizations, different implementations of the constant-coefficient Smagorinsky subgrid-scale model, and grid resolution. Simulations corresponding to the trade wind precipitating shallow cumulus composite case of the Rain in Cumulus over the Ocean (RICO) field experiment were carried out. Global boundary layer quantities such as cloud cover, liquid water path, surface precipitation rate, power spectra, and the overall convection structure were used to compare the effects of different discretization implementations. The different discretization implementations were found to exert a significant impact on the LES prediction even for the cases where the process of precipitation was not included. Increasing numerical dissipation decreases cloud cover and surface precipitation rates. For nonprecipitating cases, grid convergence is achieved for grid spacings of 20 m. Cloud cover was found to be particularly sensitive, exhibiting variations between different resolution runs even when the mean liquid water profile had converged.

Full access
Katrin Lonitz, Bjorn Stevens, Louise Nuijens, Vivek Sant, Lutz Hirsch, and Axel Seifert

Abstract

The signature of aerosols and meteorology on the development of precipitation from shallow cumuli in the trades is investigated with ground-based lidar and radar remote sensing. The measurements are taken from a cloud observatory recently established on the windward shore of Barbados. Cloud microphysical development is explored through an analysis of the radar echo of shallow cumuli before the development of active precipitation. The increase of reflectivity with height (Z gradient) depends on the amount of cloud water, which varies with meteorology, and cloud droplet number concentration N, which varies with the aerosol. Clouds with a large Z gradient have a higher tendency to form precipitation than clouds with a small Z gradient. Under similar meteorological conditions, the Z gradient is expected to be large in an environment with few aerosols and small in an environment with many aerosols. The aerosol environment is defined using three methods, but only one (based on the Raman lidar linear-depolarization ratio) to measure dusty conditions correlates significantly with the Z gradient. On average, nondusty days are characterized by a larger Z gradient. However, the dust concentration varies seasonally and covaries with relative humidity. Large-eddy simulations show that small changes in the relative humidity can have as much influence on the development of precipitation within the cloud layer as large changes in N. When clouds are conditioned on their ambient relative humidity, the sensitivity of the Z gradient to dust vanishes.

Full access
Bjorn Stevens, David Farrell, Lutz Hirsch, Friedhelm Jansen, Louise Nuijens, Ilya Serikov, Björn Brügmann, Marvin Forde, Holger Linne, Katrin Lonitz, and Joseph M. Prospero

Abstract

Clouds over the ocean, particularly throughout the tropics, are poorly understood and drive much of the uncertainty in model-based projections of climate change. In early 2010, the Max Planck Institute for Meteorology and the Caribbean Institute for Meteorology and Hydrology established the Barbados Cloud Observatory (BCO) on the windward edge of Barbados. At 13°N the BCO samples the seasonal migration of the intertropical convergence zone (ITCZ), from the well-developed winter trades dominated by shallow cumulus to the transition to deep convection as the ITCZ migrates northward during boreal summer. The BCO is also well situated to observe the remote meteorological impact of Saharan dust and biomass burning. In its first six years of operation, and through complementary intensive observing periods using the German High Altitude and Long Range Research Aircraft (HALO), the BCO has become a cornerstone of efforts to understand the relationship between cloudiness, circulation, and climate change.

Full access
Robert M. Rauber, Bjorn Stevens, Jennifer Davison, Sabine Goke, Olga L. Mayol-Bracero, David Rogers, Paquita Zuidema, Harry T. Ochs III, Charles Knight, Jorgen Jensen, Sarah Bereznicki, Simona Bordoni, Humberto Caro-Gautier, Marilé Colón-Robles, Maylissa Deliz, Shaunna Donaher, Virendra Ghate, Ela Grzeszczak, Colleen Henry, Anne Marie Hertel, Ieng Jo, Michael Kruk, Jason Lowenstein, Judith Malley, Brian Medeiros, Yarilis Méndez-Lopez, Subhashree Mishra, Flavia Morales-García, Louise A. Nuijens, Dennis O'Donnell, Diana L. Ortiz-Montalvo, Kristen Rasmussen, Erin Riepe, Sarah Scalia, Efthymios Serpetzoglou, Haiwei Shen, Michael Siedsma, Jennifer Small, Eric Snodgrass, Panu Trivej, and Jonathan Zawislak

The Rain in Cumulus over the Ocean (RICO) field campaign carried out a wide array of educational activities, including a major first in a field project—a complete mission, including research flights, planned and executed entirely by students. This article describes the educational opportunities provided to the 24 graduate and 9 undergraduate students who participated in RICO.

Full access