Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Lucas J. Sterzinger x
  • Refine by Access: All Content x
Clear All Modify Search
Lucas J. Sterzinger and Adele L. Igel


Many factors are at play in determining the amount and distribution of mountain snowfall predicted by weather models; among them is the influence of assumed ice habit. Ice habit is necessarily greatly simplified in microphysics schemes and uncertainty remains in how best to model ice processes. In this study we simulate a Sierra Nevada snowfall event driven by an extratropical cyclone in February 2014. We have simulated the storm with four fixed-habit types as well as with an ice habit scheme that is variable in time and space. In contrast to some previous studies, we found substantially smaller sensitivity of total accumulated precipitation amount and negligible changes in spatial distribution to the ice habit specification. The reason for smaller sensitivity seems to be linked to strong aggregation of ice crystals in the model. Nonetheless, while changes in total accumulated precipitation were small, changes in accumulated ice hydrometeors were larger. The variable-habit simulation produced up to 37% more ice precipitation than any of the fixed-habit simulations with an average increase of 14%. The variable-habit simulation led to a maximization of ice growth in the atmosphere and, subsequently, ice accumulation at the surface. This result points to the potential importance of accounting for the time and space variation of ice crystal properties in simulations of orographic precipitation.

Full access