Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Lucy F. Smedstad x
  • All content x
Clear All Modify Search
Charlie N. Barron, A. Birol Kara, Harley E. Hurlburt, C. Rowley, and Lucy F. Smedstad

Abstract

A ⅛° global version of the Navy Coastal Ocean Model (NCOM), operational at the Naval Oceanographic Office (NAVOCEANO), is used for prediction of sea surface height (SSH) on daily and monthly time scales during 1998–2001. Model simulations that use 3-hourly wind and thermal forcing obtained from the Navy Operational Global Atmospheric Prediction System (NOGAPS) are performed with/without data assimilation to examine indirect/direct effects of atmospheric forcing in predicting SSH. Model–data evaluations are performed using the extensive database of daily averaged SSH values from tide gauges in the Atlantic, Pacific, and Indian Oceans obtained from the Joint Archive for Sea Level (JASL) center during 1998–2001. Model–data comparisons are based on observations from 282 tide gauge locations. An inverse barometer correction was applied to SSH time series from tide gauges for model–data comparisons, and a sensitivity study is undertaken to assess the impact of the inverse barometer correction on the SSH validation. A set of statistical metrics that includes conditional bias (B cond), root-mean-square (rms) difference, correlation coefficient (R), and nondimensional skill score (SS) is used to evaluate the model performance. It is shown that global NCOM has skill in representing SSH even in a free-running simulation, with general improvement when SSH from satellite altimetry and sea surface temperature (SST) from satellite IR are assimilated via synthetic temperature and salinity profiles derived from climatological correlations. When the model was run from 1998 to 2001 with NOGAPS forcing, daily model SSH comparisons from 612 yearlong daily tide gauge time series gave a median rms difference of 5.98 cm (5.77 cm), an R value of 0.72 (0.76), and an SS value of 0.45 (0.51) for the ⅛° free-running (assimilative) NCOM. Similarly, error statistics based on the 30-day running averages of SSH time series for 591 yearlong daily tide gauge time series over the time frame 1998–2001 give a median rms difference of 3.63 cm (3.36 cm), an R value of 0.83 (0.85), and an SS value of 0.60 (0.64) for the ⅛° free-running (assimilated) NCOM. Model– data comparisons show that skill in 30-day running average SSH time series is as much as 30% higher than skill for daily SSH. Finally, SSH predictions from the free-running and assimilative ⅛° NCOM simulations are validated against sea level data from the tide gauges in two different ways: 1) using original detided sea level time series from tide gauges and 2) using the detided data with an inverse barometer correction derived using daily mean sea level pressure extracted from NOGAPS at each location. Based on comparisons with 612 yearlong daily tide gauge time series during 1998–2001, the inverse barometer correction lowered the median rms difference by about 1 cm (15%–20%). Results presented in this paper reveal that NCOM is able to predict SSH with reasonable accuracies, as evidenced by model simulations performed during 1998–2001. In an extension of the validation over broader ocean regions, the authors find good agreement in amplitude and distribution of SSH variability between NCOM and other operational model products.

Full access
David A. Sutherland, Parker MacCready, Neil S. Banas, and Lucy F. Smedstad

Abstract

A realistic hindcast simulation of the Salish Sea, which encompasses the estuarine systems of Puget Sound, the Strait of Juan de Fuca, and the Strait of Georgia, is described for the year 2006. The model shows moderate skill when compared against hydrographic, velocity, and sea surface height observations over tidal and subtidal time scales. Analysis of the velocity and salinity fields allows the structure and variability of the exchange flow to be estimated for the first time from the shelf into the farthest reaches of Puget Sound. This study utilizes the total exchange flow formalism that calculates volume transports and salt fluxes in an isohaline framework, which is then compared to previous estimates of exchange flow in the region. From this analysis, residence time distributions are estimated for Puget Sound and its major basins and are found to be markedly shorter than previous estimates. The difference arises from the ability of the model and the isohaline method for flux calculations to more accurately estimate the exchange flow. In addition, evidence is found to support the previously observed spring–neap modulation of stratification at the Admiralty Inlet sill. However, the exchange flow calculated increases at spring tides, exactly opposite to the conclusion reached from an Eulerian average of observations.

Full access