Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: M. A. Weltz x
  • Refine by Access: All Content x
Clear All Modify Search
G. N. Flerchinger, W. P. Kustas, and M. A. Weltz


While land–atmosphere transfer models have been pursued for over 30 years, Soil–Vegetation–Atmosphere–Transfer (SVAT) models are gaining attention only recently as the need to better represent the interaction between the soil and atmosphere in atmospheric circulation models becomes more apparent. The Simultaneous Heat and Water (SHAW) model, a detailed physical process model, simulates the effects of a multispecies plant canopy on heat and water transfer at the soil–atmosphere interface. The model was used in this study to simulate the surface energy balance and surface temperature of two vegetation communities using data collected during the Monsoon ’90 multidisciplinary field experiment. The two vegetation communities included a sparse, relatively homogeneous, grass-dominated community and a shrub-dominated site with large bare interspace areas between shrubs. The model mimicked the diurnal variation in the surface energy balance at both sites, while canopy leaf temperatures were simulated somewhat better at the relatively homogeneous grass-dominated site. The variation in surface fluxes accounted for by the model (i.e., model efficiency) ranged from 59% for latent heat flux at the shrub-dominated site to 98% for net radiation at both sites. Model efficiency for predicting latent heat flux at the grass-dominated site was 65%. Canopy leaf temperatures for the shrub-dominated site were consistently overpredicted by 1.8°C compared to measured values. Simulated soil surface temperatures at both sites had a model efficiency of 94% and a mean bias error of less of than 0.9°C. The ability of the model to simulate canopy and soil surface temperatures gives it the potential to be verified and periodically updated using remotely sensed radiometric surface temperature and soil moisture when extrapolating model-derived fluxes to other areas. A methodology is proposed whereby model predictions can be used with a combination of remotely sensed radiometric surface temperature and surface soil moisture to estimate soil water content within the rooting depth.

Full access
W. P. Kustas, T. J. Schmugge, K. S. Humes, T. J. Jackson, R. Parry, M. A. Weltz, and M. S. Moran


Measurements of the microwave brightness temperature (TB) with the Pushbroom Microwave Radiometer (PBMR) over the Walnut Gulch Experimental Watershed were made on selected days during the MONSOON 90 field campaign. The PBMR is an L-band instrument (21-cm wavelength) that can provide estimates of near-surface soil moisture over a variety of surfaces. Aircraft observations in the visible and near-infrared wavelengths collected on selected days also were used to compute a vegetation index. Continuous micrometeorological measurements and daily soil moisture samples were obtained at eight locations during the experimental period. Two sites were instrumented with time domain reflectometry probes to monitor the soil moisture profile. The fraction of available energy used for evapotranspiration was computed by taking the ratio of latent heat flux (LE) to the sum of net radiation (Rn) and soil heat flux (G). This ratio is commonly called the evaporative fraction (EF) and normally varies between 0 and 1 under daytime convective conditions with minimal advection. A wide range of environmental conditions existed during the field campaign, resulting in average EF values for the study area varying from 0.4 to 0.8 and values of TB ranging from 220 to 280 K. Comparison between measured TB and EF for the eight locations showed an inverse relationship with a significant correlation (r 2 = 0.69). Other days were included in the analysis by estimating TB with the soil moisture data. Because transpiration from the vegetation is more strongly coupled to root zone soil moisture, significant scatter in this relationship existed at high values of TB or dry near-surface soil moisture conditions. It caused a substantial reduction in the correlation with r 2 = 0.40 or only 40% of the variation in EF being explained by TB. The variation in EF under dry near-surface soil moisture conditions was correlated to the amount of vegetation cover estimated with a remotely sensed vegetation index. These findings indicate that information obtained from optical and microwave data can be used for quantifying the energy balance of semiarid areas. The microwave data can indicate when soil evaporation is significantly contributing to EF, while the optical data is helpful for quantifying the spatial variation in EF due to the distribution of vegetation cover.

Full access
W. P. Kustas, D.C. Goodrich, M.S. Moran, S. A. Amer, L. B. Bach, J. H. Blanford, A. Chehbouni, H. Claassen, W. E. Clements, P. C. Doraiswamy, P. Dubois, T. R. Clarke, C. S. T. Daughtry, D. I. Gellman, T. A. Grant, L. E. Hipps, A. R. Huete, K. S. Humes, T. J. Jackson, T. O. Keefer, W. D. Nichols, R. Parry, E. M. Perry, R. T. Pinker, P. J. Pinter Jr., J. Qi, A. C. Riggs, T. J. Schmugge, A. M. Shutko, D. I. Stannard, E. Swiatek, J. D. van Leeuwen, J. van Zyl, A. Vidal, J. Washburne, and M. A. Weltz

Arid and semiarid rangelands comprise a significant portion of the earth's land surface. Yet little is known about the effects of temporal and spatial changes in surface soil moisture on the hydrologic cycle, energy balance, and the feedbacks to the atmosphere via thermal forcing over such environments. Understanding this interrelationship is crucial for evaluating the role of the hydrologic cycle in surface–atmosphere interactions.

This study focuses on the utility of remote sensing to provide measurements of surface soil moisture, surface albedo, vegetation biomass, and temperature at different spatial and temporal scales. Remote-sensing measurements may provide the only practical means of estimating some of the more important factors controlling land surface processes over large areas. Consequently, the use of remotely sensed information in biophysical and geophysical models greatly enhances their ability to compute fluxes at catchment and regional scales on a routine basis. However, model calculations for different climates and ecosystems need verification. This requires that the remotely sensed data and model computations be evaluated with ground-truth data collected at the same areal scales.

The present study (MONSOON 90) attempts to address this issue for semiarid rangelands. The experimental plan included remotely sensed data in the visible, near-infrared, thermal, and microwave wavelengths from ground and aircraft platforms and, when available, from satellites. Collected concurrently were ground measurements of soil moisture and temperature, energy and water fluxes, and profile data in the atmospheric boundary layer in a hydrologically instrumented semiarid rangeland watershed. Field experiments were conducted in 1990 during the dry and wet or “monsoon season” for the southwestern United States. A detailed description of the field campaigns, including measurements and some preliminary results are given.

Full access