Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: M. Barlow x
  • All content x
Clear All Modify Search
M. Barlow, S. Nigam, and E. H. Berbery

Abstract

The relationship between the three primary modes of Pacific sea surface temperature (SST) variability—the El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation, and the North Pacific mode—and U.S. warm season hydroclimate is examined. In addition to precipitation, drought and stream flow data are analyzed to provide a comprehensive picture of the lower-frequency components of hydrologic variability.

ENSO and the two decadal modes are extracted from a single unfiltered analysis, allowing a direct intercomparison of the modal structures and continental linkages. Both decadal modes have signals in the North Pacific, but the North Pacific mode captures most of the local variability. A summertime U.S. hydroclimatic signal is associated with all three SST modes, with the linkages of the two decadal modes comparable in strength to that of ENSO.

The three SST variability modes also appear to play a significant role in long-term U.S. drought events. In particular, the northeastern drought of the 1960s is shown to be closely linked to the North Pacific mode. Concurrent with the drought were large positive SST anomalies in the North Pacific, quite similar in structure to the North Pacific mode, and an example of a physical realization of the mode. Correspondingly, the 1962–66 drought pattern had considerable similarity to the drought regression associated with the North Pacific mode. Analysis of upper-level stationary wave activity during the drought period shows a flux emanating from the North Pacific and propagating over the United States. The near-equivalent-barotropic circulation anomalies originating in the North Pacific culminate in a cyclonic circulation over the East Coast that, at low levels, opposes the climatological inflow of moisture in an arc over the continent from the Gulf Coast to the Northeast, consistent with the observed drought.

Full access
T. Lamont, M. A. van den Berg, and R. G. Barlow

Abstract

The Agulhas Current is a fast western boundary current flowing along the South African east coast, strongly influencing oceanographic variability on the adjacent KwaZulu-Natal shelf. Hydrographic observations in January 2010, July 2010, and July 1989 have been used to describe variations in geostrophic currents and water masses and to elucidate mechanisms of change in circulation and thermohaline structure. Differences in wind forcing, precipitation, and solar insolation caused modifications in stratification and mixing that resulted in seasonal changes in surface temperature, salinity, and mixed layer depth Z MLD between the austral summer and winter surveys. During January 2010, surface temperatures were elevated and there was a large range in salinity as the upper 10 m was influenced by river outflow and rainfall. In July 2010 and 1989, surface temperatures were lower and the salinity range was significantly less. The Z MLD in January 2010 was much shallower, varying between 5 and 40 m, while deeper Z MLD, from 9 to 107 m, was found in July 2010 and 1989. Cross-shelf, alongshore, and vertical variations in water masses during July 2010 and July 1989 were driven by deviations in the position of the inshore edge of the Agulhas Current and the influence of offshore cyclonic eddies. In January 2010, the close proximity of the current to the coast and shelf break caused increased Ekman veering in the bottom layers along the shelf edge and slope in the north and recirculation in the south.

Full access
C. S. B. Grimmond, M. Blackett, M. J. Best, J. Barlow, J-J. Baik, S. E. Belcher, S. I. Bohnenstengel, I. Calmet, F. Chen, A. Dandou, K. Fortuniak, M. L. Gouvea, R. Hamdi, M. Hendry, T. Kawai, Y. Kawamoto, H. Kondo, E. S. Krayenhoff, S-H. Lee, T. Loridan, A. Martilli, V. Masson, S. Miao, K. Oleson, G. Pigeon, A. Porson, Y-H. Ryu, F. Salamanca, L. Shashua-Bar, G-J. Steeneveld, M. Tombrou, J. Voogt, D. Young, and N. Zhang

Abstract

A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no comparison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling approaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux.

Full access
Janet Barlow, Martin Best, Sylvia I. Bohnenstengel, Peter Clark, Sue Grimmond, Humphrey Lean, Andreas Christen, Stefan Emeis, Martial Haeffelin, Ian N. Harman, Aude Lemonsu, Alberto Martilli, Eric Pardyjak, Mathias W Rotach, Susan Ballard, Ian Boutle, Andy Brown, Xiaoming Cai, Matteo Carpentieri, Omduth Coceal, Ben Crawford, Silvana Di Sabatino, Junxia Dou, Daniel R. Drew, John M. Edwards, Joachim Fallmann, Krzysztof Fortuniak, Jemma Gornall, Tobias Gronemeier, Christos H. Halios, Denise Hertwig, Kohin Hirano, Albert A. M. Holtslag, Zhiwen Luo, Gerald Mills, Makoto Nakayoshi, Kathy Pain, K. Heinke Schlünzen, Stefan Smith, Lionel Soulhac, Gert-Jan Steeneveld, Ting Sun, Natalie E Theeuwes, David Thomson, James A. Voogt, Helen C. Ward, Zheng-Tong Xie, and Jian Zhong
Open access
S. I. Bohnenstengel, S. E. Belcher, A. Aiken, J. D. Allan, G. Allen, A. Bacak, T. J. Bannan, J. F. Barlow, D. C. S. Beddows, W. J. Bloss, A. M. Booth, C. Chemel, O. Coceal, C. F. Di Marco, M. K. Dubey, K. H. Faloon, Z. L. Fleming, M. Furger, J. K. Gietl, R. R. Graves, D. C. Green, C. S. B. Grimmond, C. H. Halios, J. F. Hamilton, R. M. Harrison, M. R. Heal, D. E. Heard, C. Helfter, S. C. Herndon, R. E. Holmes, J. R. Hopkins, A. M. Jones, F. J. Kelly, S. Kotthaus, B. Langford, J. D. Lee, R. J. Leigh, A. C. Lewis, R. T. Lidster, F. D. Lopez-Hilfiker, J. B. McQuaid, C. Mohr, P. S. Monks, E. Nemitz, N. L. Ng, C. J. Percival, A. S. H. Prévôt, H. M. A. Ricketts, R. Sokhi, D. Stone, J. A. Thornton, A. H. Tremper, A. C. Valach, S. Visser, L. K. Whalley, L. R. Williams, L. Xu, D. E. Young, and P. Zotter

Abstract

Air quality and heat are strong health drivers, and their accurate assessment and forecast are important in densely populated urban areas. However, the sources and processes leading to high concentrations of main pollutants, such as ozone, nitrogen dioxide, and fine and coarse particulate matter, in complex urban areas are not fully understood, limiting our ability to forecast air quality accurately. This paper introduces the Clean Air for London (ClearfLo; www.clearflo.ac.uk) project’s interdisciplinary approach to investigate the processes leading to poor air quality and elevated temperatures.

Within ClearfLo, a large multi-institutional project funded by the U.K. Natural Environment Research Council (NERC), integrated measurements of meteorology and gaseous, and particulate composition/loading within the atmosphere of London, United Kingdom, were undertaken to understand the processes underlying poor air quality. Long-term measurement infrastructure installed at multiple levels (street and elevated), and at urban background, curbside, and rural locations were complemented with high-resolution numerical atmospheric simulations. Combining these (measurement–modeling) enhances understanding of seasonal variations in meteorology and composition together with the controlling processes. Two intensive observation periods (winter 2012 and the Summer Olympics of 2012) focus upon the vertical structure and evolution of the urban boundary layer; chemical controls on nitrogen dioxide and ozone production—in particular, the role of volatile organic compounds; and processes controlling the evolution, size, distribution, and composition of particulate matter. The paper shows that mixing heights are deeper over London than in the rural surroundings and that the seasonality of the urban boundary layer evolution controls when concentrations peak. The composition also reflects the seasonality of sources such as domestic burning and biogenic emissions.

Full access